diff --git a/source/Charge.en.tex b/source/Charge.en.tex index b333f53eaa5245117f883e6c6f0b4a4c5b51633e..cf3844a9e65fb41b54dcdb909a39d48f206ab73c 100644 --- a/source/Charge.en.tex +++ b/source/Charge.en.tex @@ -2,8 +2,10 @@ \begin{definition} The \defii{total}{charge} denoted by $\TotalCharge$ describes the net charge entering the right hand side of the Poisson equation. It is composed by the - \trefii[DopingProfile]{doping}{profile} and the \adefii[Densities]{electron}{electron}{density} - and \atrefii[Densities]{hole densities}{hole}{density} by $\TotalCharge + \trefii[DopingProfile]{doping}{profile} and the + \atrefii[DensityElectrons]{electron}{electron}{density} and + \atrefii[DensityHoles]{hole densities}{hole}{density} by + $\TotalCharge =\realtimes{-\ElementaryCharge,\realminus{\realplus{\DopingProfile,\DensityHoles},\DensityElectrons}}$. \end{definition} \end{mhmodnl} diff --git a/source/DeviceGeometry.en.tex b/source/DeviceGeometry.en.tex index 07be37d48b19de9ee953a8f269efc80ca8752367..e63f8ef8fc6eac6abfc2cca3be7c920d2a1bc1eb 100644 --- a/source/DeviceGeometry.en.tex +++ b/source/DeviceGeometry.en.tex @@ -1,11 +1,12 @@ \begin{mhmodnl}{DeviceGeometry}{en} \begin{definition} An important \trefii[Device]{device}{property} is the spatial geometry. It is modelled - by a \defi{domain} $\sseteq\DeviceDomain{\ndim{3}\RealNumbers}$ that has special regularity - properties.\ednote{I think we want to also introduce a theory \texttt{OneDDevice} as a - 3D device with lots of symmetry. And we should have a view that relates - $\DeviceDomain$ to an interval in this case. The theory \texttt{OneDDevice} should - also introduce ``top'' and ``bottom'' and also 0 and $L$ via the view.} + by a \defi{domain} $\sseteq\DeviceDomain{\ndim\RealNumbers{3}}$ that has special + regularity properties.\ednote{I think we want to also introduce a theory + \texttt{OneDDevice} as a 3D device with lots of symmetry. And we should have a view + that relates $\DeviceDomain$ to an interval in this case. The theory + \texttt{OneDDevice} should also introduce ``top'' and ``bottom'' and also 0 and $L$ + via the view.} \end{definition} \end{mhmodnl} diff --git a/source/Displacement.en.tex b/source/Displacement.en.tex index 2125bcff5a90e53f7a64db1bdd4f50689e018066..50a91363b8f193639b90ec4930acd5920bd9caf4 100644 --- a/source/Displacement.en.tex +++ b/source/Displacement.en.tex @@ -2,7 +2,7 @@ \begin{definition} Expression for electric displacement denoted by $\ElectricDisplacement = - \uminus\DielectricPermitivity d/dx \ElectrostaticPotential$ + \realuminus\DielectricPermitivity d/dx \ElectrostaticPotential$ \end{definition} \end{mhmodnl} diff --git a/source/FermiPotentialElectrons.en.tex b/source/FermiPotentialElectrons.en.tex index e41beb9e806752d0d2ad4265b93b1fd8ea75f384..29fdf3712500084d7a2d55a8778c5a0f5d6ea034 100644 --- a/source/FermiPotentialElectrons.en.tex +++ b/source/FermiPotentialElectrons.en.tex @@ -1,6 +1,6 @@ \begin{mhmodnl}{FermiPotentialElectrons}{en} \begin{definition} - The \defiii{Fermi}{Potential}{Electrons} usually denoted by $\QFPn$ is a function + The \defiii{Fermi}{Potential}{Electrons} usually denoted by $\QFPnOp$ is a function describing the variation of the quasi-Fermi potentials of the electrons across the domain $\DeviceDomain$. It is linked to the quasi-Fermi level of the electrons which controls the occupation of the conduction band and is a measure for the electron density diff --git a/source/FermiPotentialHoles.en.tex b/source/FermiPotentialHoles.en.tex index 2fdb227404635847083615fac17c5295b93bf4ae..d397e9b464fffc06dd1d6b77be9f9c7172dfc52d 100644 --- a/source/FermiPotentialHoles.en.tex +++ b/source/FermiPotentialHoles.en.tex @@ -1,6 +1,6 @@ \begin{mhmodnl}{FermiPotentialHoles}{en} \begin{definition} - The \defiii{Fermi}{Potential}{Holes} usually denoted by $\QFPp$ is a function describing + The \defiii{Fermi}{Potential}{Holes} usually denoted by $\QFPpOp$ is a function describing the variation of the quasi-Fermi potentials of the holes across the domain $\DeviceDomain$. It is linked to the quasi-Fermi level of the holes which controls the occupation of the valance band. Its gradient is the driving force of the hole current. diff --git a/source/PhysicalConstants.en.tex b/source/PhysicalConstants.en.tex index 33509877940ced6b6b7541e17ebabc0c151d7aa5..51361ca2533a6a0829a38771e6392e3ff4258e58 100644 --- a/source/PhysicalConstants.en.tex +++ b/source/PhysicalConstants.en.tex @@ -14,7 +14,7 @@ in the amount of substance given by one mole. The accepted value of $\AvogadroConst$ is - $\quantityof{\scinotation{6.022140857}{23}}{\frac1\mole}$ + $\quantityof{\scinotation{6.022140857}{23}}{\frac1\SImole}$ \end{definition} \begin{definition} @@ -26,7 +26,7 @@ particles at the stated temperature is being considered. The accepted value of $\GasConst$ is - $\quantityof{8.3144598}{\frac\Joule{\atimes{\mole\Kelvin}}}$ + $\quantityof{8.3144598}{\frac\Joule{\atimes{\SImole\Kelvin}}}$ \end{definition} \begin{definition} diff --git a/source/PhysicalConstants.tex b/source/PhysicalConstants.tex index b636b8af217beae5ffe5917809887fa7835e7bcf..2a8e3f44c8295770d829647fc20e2a33fabdee08 100644 --- a/source/PhysicalConstants.tex +++ b/source/PhysicalConstants.tex @@ -3,6 +3,7 @@ \gimport[smglom/arithmetics]{scinotation} \importmhmodule[repos=BaseMH/physics,path=units/en/energy]{energy} \importmhmodule[repos=BaseMH/physics,path=units/en/temperature]{temperature} + \importmhmodule[repos=BaseMH/physics,path=units/en/substance-amount]{substance-amount} \symdef[name=vacuum-dielectric-permitivity]{VacuumDielectricPermitivity}{\varepsilon_0} \symtest{VacuumDielectricPermitivity}{\VacuumDielectricPermitivity} @@ -10,12 +11,14 @@ \symtest{ElementaryCharge}{\ElementaryCharge} \symdef[name=gas-constant]{GasConst}{\text{R}} - \symvariant{GasConst}{bar}{\text{\overline{R}}} + \symtest[name=gas-constantt]{GasConst}{\GasConst} + \symvariant{GasConst}{bar}{\overline{\text{R}}} + \symtest[variant=bar]{GasConst}{\GasConst[bar]} - \symdef[name=Avogadro-constant]{AvogadroConst}{N_A} + \symdef[name=Avogadro-constant]{AvogadroConst}{N_A} \symvariant{AvogadroConst}{l}{L} - \symdef[name=Boltzmann-constant]{BoltzmannConst}{k_B} + \symdef[name=Boltzmann-constant,align=Boltzmann_constant]{BoltzmannConst}{k_B} \symtest{BoltzmannConst}{\BoltzmannConst} \symvariant{BoltzmannConst}{noB}{k} \symtest[variant=noB]{BoltzmannConst}{\BoltzmannConst[noB]}