diff --git a/source/Charge.en.tex b/source/Charge.en.tex
index c70fb414c5c3974d01db0a8a7e222b13813ab493..3e0ba6a30e22db453a65241bf62ad47b426a1cd1 100644
--- a/source/Charge.en.tex
+++ b/source/Charge.en.tex
@@ -3,8 +3,8 @@
     The \defii{total}{charge} denoted by $\TotalCharge$ describes the net charge entering
     the right hand side of the Poisson equation. It is composed by the
     \trefii[DopingProfile]{doping}{profile} and the
-    \mtrefi[DensityElectrons?electron-density]{electron} and
-    \mtrefii[DensityHoles?hole-density]{hole}{densities} by
+    \trefi[DensityElectrons?electron-density]{electron} and
+    \trefii[DensityHoles?hole-density]{hole}{densities} by
     $\TotalCharge
     =\realtimes{-\ElementaryCharge,\realminus{\realplus{\DopingProfile,\DensityHoles},\DensityElectrons}}$.
   \end{definition}   
diff --git a/source/OneDimDevice.en.tex b/source/OneDimDevice.en.tex
index 430ded25a23e7f237d7083ed8ad7e7c4a87b2c8c..2b40651f6a2bd0b4f2604a83444dafdc9726ef85 100644
--- a/source/OneDimDevice.en.tex
+++ b/source/OneDimDevice.en.tex
@@ -1,7 +1,7 @@
 \begin{mhmodnl}{OneDimDevice}{en}
   \begin{definition}
     A \trefi[Device]{device} is called \defi{one-dimensional}, iff all of its
-    \mtrefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are
+    \trefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are
     translation-invariant in two directions
   \end{definition}
 \end{mhmodnl}
diff --git a/source/TwoDimDevice.en.tex b/source/TwoDimDevice.en.tex
index 8ccc72dffbd23a3d827f8fda1d755b2032fbd774..84b27045608de96277622ad6caa41e52824c560d 100644
--- a/source/TwoDimDevice.en.tex
+++ b/source/TwoDimDevice.en.tex
@@ -1,7 +1,7 @@
 \begin{mhmodnl}{TwoDimDevice}{en}
   \begin{definition}
     A \trefi[Device]{device} is called \defi{two-dimensional}, iff all of its
-    \mtrefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are
+    \trefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are
     translation-invariant in one direction.
   \end{definition}
 \end{mhmodnl}
diff --git a/supplement/WIAS-preprint_2263_snippet/hbchapter.tex b/supplement/WIAS-preprint_2263_snippet/hbchapter.tex
index 0f286389c7446278e7251d9d8ffdc160970f8546..6ea8d00e0decf4a3872c20f176ccd094b29afd48 100644
--- a/supplement/WIAS-preprint_2263_snippet/hbchapter.tex
+++ b/supplement/WIAS-preprint_2263_snippet/hbchapter.tex
@@ -152,7 +152,7 @@ constants.  The (absolute) \trefii[PoissonParameters]{dielectric}{permittivity}
 $\DielectricPermitivity =
 \realtimes{\VacuumDielectricPermitivity,\RelativeDielectricPermitivity}$ is given as the
 product of the \trefiii[PoissonParameters]{vacuum}{dielectric}{permittivity}
-$\VacuumDielectricPermitivity$ and the \mtrefi[PoissonParameters?relative-dielectric-permittivity]{relative permittivity} of the semiconductor
+$\VacuumDielectricPermitivity$ and the \trefi[PoissonParameters?relative-dielectric-permittivity]{relative permittivity} of the semiconductor
 $\RelativeDielectricPermitivity$ in static (low frequency) limit.  The carrier mobilities
 $\ElectronMobility$ and $\HoleMobility$, the conduction and valence band densities of
 states $\DOSConductionBand$ and $\DOSValenceBand$ as well as the conduction and valence band-edge energies $E_c$ and