Commit be9e1563 authored by Xin's avatar Xin

add 3, validated

parent 0d158efa
\begin{mhmodnl}[creators=Xin]{group-order}{zhs}
\begin{definition}
一个\mtrefi[group?group]{}\defi[name=order]{}是其\mtrefi[magma?base-set]{基集}\mtrefi[finite-cardinality?cardinality]{}
\end{definition}
\end{mhmodnl}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
\ No newline at end of file
\begin{mhmodnl}[creators=Xin]{group}{zhs}
\begin{definition}
$\mvstructure{\magmaset,\magmaopOp,\unitalunit}$为一个\mtrefi[monoid?monoid]{幺半群},则称$\mvstructure{\magmaset,\magmaopOp,\unitalunit,\groupinvOp}$为一个\defi[name=group]{},并且对于所有$\inset{a}\magmaset$都有$\inset{b}\magmaset$(称$b$$a$\defi[name=inverse]{逆元})使得$\magmaop{a}b=\unitalunit$。称映射$\magmaset$中元素到其逆元的函数$\fun\groupinvOp\magmaset\magmaset$\defi[name=inverse-function]{逆函数},相应地将$\inset{a}\magmaset$\mtrefi[?inverse]{逆元}写为$\groupinv{a}$
\end{definition}
\end{mhmodnl}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
% LocalWords: gle langle circ termref defi
\ No newline at end of file
\begin{mhmodnl}[creators=cdemirkiran,contributors=miko]{homogeneouspolynomial}{de}
\begin{definition}[id=homogeneouspolynomial.def]
Wir nennen ein \mtrefi[polynomial?polynomial]{Polynom} \defi[name=homogeneous]{homogen}, wenn
alle sine \mtrefi[polynomial?monomial]{Monome} den selben
alle seine \mtrefi[polynomial?monomial]{Monome} den selben
\mtrefi[polynomial?degree]{Grad} haben.
\end{definition}
\end{mhmodnl}
\begin{mhmodnl}[creators=Xin]{homogeneouspolynomial}{zhs}
\begin{definition}[id=homogeneouspolynomial.def]
称一个\mtrefi[polynomial?polynomial]{多项式}\defi[name=homogeneous]{齐次的},当其所有\mtrefi[polynomial?monomial]{单项式}都为同一个\mtrefi[polynomial?degree]{次数}
\end{definition}
\end{mhmodnl}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment