Commit be9e1563 by Xin

parent 0d158efa
 \begin{mhmodnl}[creators=Xin]{group-order}{zhs} \begin{definition} 一个\mtrefi[group?group]{群}的\defi[name=order]{阶}是其\mtrefi[magma?base-set]{基集}的\mtrefi[finite-cardinality?cardinality]{势}。 \end{definition} \end{mhmodnl} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: \ No newline at end of file
 \begin{mhmodnl}[creators=Xin]{group}{zhs} \begin{definition} 令$\mvstructure{\magmaset,\magmaopOp,\unitalunit}$为一个\mtrefi[monoid?monoid]{幺半群}，则称$\mvstructure{\magmaset,\magmaopOp,\unitalunit,\groupinvOp}$为一个\defi[name=group]{群}，并且对于所有$\inset{a}\magmaset$都有$\inset{b}\magmaset$（称$b$为$a$的\defi[name=inverse]{逆元}）使得$\magmaop{a}b=\unitalunit$。称映射$\magmaset$中元素到其逆元的函数$\fun\groupinvOp\magmaset\magmaset$为\defi[name=inverse-function]{逆函数}，相应地将$\inset{a}\magmaset$的\mtrefi[?inverse]{逆元}写为$\groupinv{a}$。 \end{definition} \end{mhmodnl} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: % LocalWords: gle langle circ termref defi \ No newline at end of file
 \begin{mhmodnl}[creators=cdemirkiran,contributors=miko]{homogeneouspolynomial}{de} \begin{definition}[id=homogeneouspolynomial.def] Wir nennen ein \mtrefi[polynomial?polynomial]{Polynom} \defi[name=homogeneous]{homogen}, wenn alle sine \mtrefi[polynomial?monomial]{Monome} den selben alle seine \mtrefi[polynomial?monomial]{Monome} den selben \mtrefi[polynomial?degree]{Grad} haben. \end{definition} \end{mhmodnl}
 \begin{mhmodnl}[creators=Xin]{homogeneouspolynomial}{zhs} \begin{definition}[id=homogeneouspolynomial.def] 称一个\mtrefi[polynomial?polynomial]{多项式}为\defi[name=homogeneous]{齐次的}，当其所有\mtrefi[polynomial?monomial]{单项式}都为同一个\mtrefi[polynomial?degree]{次数}。 \end{definition} \end{mhmodnl}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!