Commit a1d977f8 authored by Michael Kohlhase's avatar Michael Kohlhase

replace_atrefi*_with_mtrefi

parent cbe7b3f3
......@@ -6,8 +6,7 @@
\end{definition}
\begin{omtext}[type=elaboration,id=affinealgebraiccurve.def]
\trefiiis{affine}{algebraic}{curve} are \atrefii[algebraicvariety]{algebraic
varieties}{algebraic}{variety} of \term{degree} $1$.
\trefiiis{affine}{algebraic}{curve} are \mtrefi[algebraicvariety?algebraic-variety]{algebraic varieties} of \term{degree} $1$.
\end{omtext}
\end{mhmodnl}
%%% Local Variables:
......
\begin{mhmodnl}[creators=cdemirkiran,contributors=miko]{galoisgroup}{en}
\begin{definition}[id=galoisgroup.def]
Assume that $E$ is an \atrefii[subfield]{extension}{field}{extension} of a
Assume that $E$ is an \mtrefi[subfield?field-extension]{extension} of a
\trefi[field]{field} $F$. An \term{automorphism} of $E/F$ is defined to be an
\term{automorphism} of $E$ that fixes $F$ pointwise.
......
......@@ -6,7 +6,7 @@
\[\halfcompell{n} = \atimes{\frac12,\pellucnum{n}}\]
The definition in closed form:
\[\halfcompell{n}=\frac{\power[basebrack]{1+\asqrt2}n+\power[basebrack]{1-\asqrt2}n}{2}\]
Paired recurrences (using \atrefi[pellnumbers]{Pell numbers}{pellnumbers}):
Paired recurrences (using \mtrefi[pellnumbers?pellnumbers]{Pell numbers}):
\[\halfcompell{n} = \piecewise{\piece1{n=0}\otherwise{\halfcompell{n-1}+2\pellnum{n-1}}}\]
\[\pellnum{n}=\piecewise{\piece0{n=0}\otherwise{\halfcompell{n-1}+\pellnum{n-1}}}\]
\end{definition}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment