Commit a1d977f8 by Michael Kohlhase

replace_atrefi*_with_mtrefi

parent cbe7b3f3
 ... ... @@ -6,8 +6,7 @@ \end{definition} \begin{omtext}[type=elaboration,id=affinealgebraiccurve.def] \trefiiis{affine}{algebraic}{curve} are \atrefii[algebraicvariety]{algebraic varieties}{algebraic}{variety} of \term{degree} $1$. \trefiiis{affine}{algebraic}{curve} are \mtrefi[algebraicvariety?algebraic-variety]{algebraic varieties} of \term{degree} $1$. \end{omtext} \end{mhmodnl} %%% Local Variables: ... ...
 \begin{mhmodnl}[creators=cdemirkiran,contributors=miko]{galoisgroup}{en} \begin{definition}[id=galoisgroup.def] Assume that $E$ is an \atrefii[subfield]{extension}{field}{extension} of a Assume that $E$ is an \mtrefi[subfield?field-extension]{extension} of a \trefi[field]{field} $F$. An \term{automorphism} of $E/F$ is defined to be an \term{automorphism} of $E$ that fixes $F$ pointwise. ... ...
 ... ... @@ -6,7 +6,7 @@ $\halfcompell{n} = \atimes{\frac12,\pellucnum{n}}$ The definition in closed form: $\halfcompell{n}=\frac{\power[basebrack]{1+\asqrt2}n+\power[basebrack]{1-\asqrt2}n}{2}$ Paired recurrences (using \atrefi[pellnumbers]{Pell numbers}{pellnumbers}): Paired recurrences (using \mtrefi[pellnumbers?pellnumbers]{Pell numbers}): $\halfcompell{n} = \piecewise{\piece1{n=0}\otherwise{\halfcompell{n-1}+2\pellnum{n-1}}}$ $\pellnum{n}=\piecewise{\piece0{n=0}\otherwise{\halfcompell{n-1}+\pellnum{n-1}}}$ \end{definition} ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!