Commit 52471655 by Michael Kohlhase

### debugging_with_glossary

parent 08f07221
 \begin{mhmodnl}[creators=miko,srccite=Rudin:fa73]{bounded-topvr}{de} \vardef[name=pole]{poleOp}{\mathrel\leq} \vardef{pole}[2]{\infix[p=400]{\poleOp}{#1}{#2}} \vardef{vzero}{0} \begin{definition} \vardef[name=pole]{poleOp}{\mathrel\leq} \vardef{pole}[2]{\infix[p=400]{\poleOp}{#1}{#2}} \vardef{vzero}{0} Sei $\mvstructure{\cV,\cO}$ ein \mtrefii[topological-vectorspace?topological-vector-space]{topologischer}{Vektorraum} mit \mtrefi[vector-space?base-set]{Grundmenge} $V$ und ... ...
 \begin{mhmodnl}[creators=miko,srccite=Rudin:fa73]{bounded-topvr}{en} \vardef[name=pole]{poleOp}{\mathrel\leq} \vardef{pole}[2]{\infix[p=400]{\poleOp}{#1}{#2}} \vardef{vzero}{0} \begin{definition} \vardef[name=pole]{poleOp}{\mathrel\leq} \vardef{pole}[2]{\infix[p=400]{\poleOp}{#1}{#2}} \vardef{vzero}{0} Let $\mvstructure{\cV,\cO}$ be a \trefiii[topological-vectorspace]{topological}{vector}{space} with \trefii[vector-space]{base}{set} $V$ and \trefii[vector-space]{zero}{vector} $\vzero$ ... ...
 \begin{mhmodnl}[creators=miko]{translation-invariant-metric}{de} \begin{definition} \vardef{vaddOp}{+} \vardef[assocarg=1]{vadd}[1]{\assoc[p=500]\vaddOp{#1}} \begin{definition} Wir nennen eine \mtrefi[metric-space?distance-function]{Metrik} $d$ auf der \mtrefi[vector-space?base-set]{Grundmenge} $V$ eines \mtrefi[vector-space?vector-space]{Vektorraums} ... ...
 \begin{mhmodnl}[creators=miko]{translation-invariant-metric}{en} \vardef{vaddOp}{+} \vardef[assocarg=1]{vadd}[1]{\assoc[p=500]\vaddOp{#1}} \begin{definition} \vardef{vaddOp}{+} \vardef[assocarg=1]{vadd}[1]{\assoc[p=500]\vaddOp{#1}} We call a \mtrefi[metric-space?distance-function]{metric} $\ametricOp$ on the \trefii[vector-space]{base}{set} $V$ of a \trefii[vector-space]{vector}{space} with \trefii[vector-space]{vector}{addition} $\vaddOp$ \defii{translation}{invariant}, iff ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!