Commit 8403c067 authored by Michael Kohlhase's avatar Michael Kohlhase

debugging

parent 0995e666
......@@ -7,7 +7,7 @@
$\fun\anormOp\vbaseset\RealNumbers$ eine \defi[name=norm]{Norm} auf $\cV$, wenn f"ur alle
$\inset{a}F$ und $\minset{u,v}\vbaseset$ gilt:
\begin{enumerate}
\item $\anorm{\smul{a}v}=\realtimes{\absolutevalue{a},\anorm{v}}$
\item $\anorm{\smul{a}v}=\realtimes{\realabsval{a},\anorm{v}}$
(\defii[name=absolute-homogeneity]{absolute}{Homogenit"at}).
\item $\reallethan{\anorm{\vadd{u,v}}}{\realplus{\anorm{u},\anorm{v}}}$
(\defi[name=triangle-inequality]{Dreiecksungleichung}).
......
......@@ -7,7 +7,7 @@
$\inset{a}F$ and $\minset{u,v}\vbaseset$
\begin{enumerate}
\item
\assdef[absolute-homogeneity]{$\anorm{\smul{a}v}=\realtimes{\absolutevalue{a},\anorm{v}}$}
\assdef[absolute-homogeneity]{$\anorm{\smul{a}v}=\realtimes{\realabsval{a},\anorm{v}}$}
(\defii{absolute}{homogeneity} or
\defii[name=absolute-homogeneity]{absolute}{scalability}).
\item
......
......@@ -2,7 +2,6 @@
\gimport[smglom/arithmetics]{complexnumbers}
\gimport[smglom/arithmetics]{realarith}
\gimport[smglom/linear-algebra]{vector-space}
\gimport[smglom/arithmetics]{arithmetics}
\gimport[smglom/algebra]{subfield}
\symdef[name=norm,align=norm]{anormOp}{|\cdot|}
\symvariant{anormOp}{double}{\Vert\cdot\Vert}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment