Commit 8403c067 by Michael Kohlhase

### debugging

parent 0995e666
 ... ... @@ -7,7 +7,7 @@ $\fun\anormOp\vbaseset\RealNumbers$ eine \defi[name=norm]{Norm} auf $\cV$, wenn f"ur alle $\inset{a}F$ und $\minset{u,v}\vbaseset$ gilt: \begin{enumerate} \item $\anorm{\smul{a}v}=\realtimes{\absolutevalue{a},\anorm{v}}$ \item $\anorm{\smul{a}v}=\realtimes{\realabsval{a},\anorm{v}}$ (\defii[name=absolute-homogeneity]{absolute}{Homogenit"at}). \item $\reallethan{\anorm{\vadd{u,v}}}{\realplus{\anorm{u},\anorm{v}}}$ (\defi[name=triangle-inequality]{Dreiecksungleichung}). ... ...
 ... ... @@ -7,7 +7,7 @@ $\inset{a}F$ and $\minset{u,v}\vbaseset$ \begin{enumerate} \item \assdef[absolute-homogeneity]{$\anorm{\smul{a}v}=\realtimes{\absolutevalue{a},\anorm{v}}$} \assdef[absolute-homogeneity]{$\anorm{\smul{a}v}=\realtimes{\realabsval{a},\anorm{v}}$} (\defii{absolute}{homogeneity} or \defii[name=absolute-homogeneity]{absolute}{scalability}). \item ... ...
 ... ... @@ -2,7 +2,6 @@ \gimport[smglom/arithmetics]{complexnumbers} \gimport[smglom/arithmetics]{realarith} \gimport[smglom/linear-algebra]{vector-space} \gimport[smglom/arithmetics]{arithmetics} \gimport[smglom/algebra]{subfield} \symdef[name=norm,align=norm]{anormOp}{|\cdot|} \symvariant{anormOp}{double}{\Vert\cdot\Vert} ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!