Commit ec8b59b1 authored by Michael Kohlhase's avatar Michael Kohlhase

debugging

parent 9f1f905a
......@@ -3,7 +3,7 @@
Wir nennen einen
\mtrefii[topological-vectorspace?topological-vector-space]{topologishen}{Vektorraum}
einen \defi[name=fspace]{F-Raum}, wenn seine
\mtrefi[topological-vectorspace?topology]{Topologie} durch eine
\mtrefi[topological-vectorspace?vector-topology]{Topologie} durch eine
\mtrefi[complete?complete]{vollst"andig}e,
\mtrefi[translation-invariant-metric?translation-invariant]{translationsinvariant}e
\mtrefi[metric-space?distance-function]{Metrik}
......
\begin{mhmodnl}[creators=miko]{fspace}{en}
\begin{definition}
We call a \trefiii[topological-vectorspace]{topological}{vector}{space} an
\defi[name=fspace]{F-space}, iff its \trefi[topological-vectorspace]{topology} is
\defi[name=fspace]{F-space}, iff its \trefii[topological-vectorspace]{vector}{topology} is
\mtrefi[metric-induced-topology?induced-topology]{induced} by a
\trefi[complete]{complete},
\trefii[translation-invariant-metric]{translation}{invariant}
......
\begin{mhmodnl}[creators=miko]{inner-product-space}{en}
\begin{definition}
Let $F$ be the \trefi[field]{field} of \atrefii[realnumbers]{real}{real}{number} or
\trefiis[complexnumbers]{complex}{numbers}, $V$ a \trefii[vector-space]{vector}{space}
\trefiis[complexnumbers]{complex}{number}, $V$ a \trefii[vector-space]{vector}{space}
over $F$, and $\fun\innerproductOp{V,V}F$ a function with
\begin{enumerate}
\item $\innerproduct{x}y=\compconjugate{\innerproduct{y}x}$
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment