Commit ec8b59b1 by Michael Kohlhase

### debugging

parent 9f1f905a
 ... ... @@ -3,7 +3,7 @@ Wir nennen einen \mtrefii[topological-vectorspace?topological-vector-space]{topologishen}{Vektorraum} einen \defi[name=fspace]{F-Raum}, wenn seine \mtrefi[topological-vectorspace?topology]{Topologie} durch eine \mtrefi[topological-vectorspace?vector-topology]{Topologie} durch eine \mtrefi[complete?complete]{vollst"andig}e, \mtrefi[translation-invariant-metric?translation-invariant]{translationsinvariant}e \mtrefi[metric-space?distance-function]{Metrik} ... ...
 \begin{mhmodnl}[creators=miko]{fspace}{en} \begin{definition} We call a \trefiii[topological-vectorspace]{topological}{vector}{space} an \defi[name=fspace]{F-space}, iff its \trefi[topological-vectorspace]{topology} is \defi[name=fspace]{F-space}, iff its \trefii[topological-vectorspace]{vector}{topology} is \mtrefi[metric-induced-topology?induced-topology]{induced} by a \trefi[complete]{complete}, \trefii[translation-invariant-metric]{translation}{invariant} ... ...
 \begin{mhmodnl}[creators=miko]{inner-product-space}{en} \begin{definition} Let $F$ be the \trefi[field]{field} of \atrefii[realnumbers]{real}{real}{number} or \trefiis[complexnumbers]{complex}{numbers}, $V$ a \trefii[vector-space]{vector}{space} \trefiis[complexnumbers]{complex}{number}, $V$ a \trefii[vector-space]{vector}{space} over $F$, and $\fun\innerproductOp{V,V}F$ a function with \begin{enumerate} \item $\innerproduct{x}y=\compconjugate{\innerproduct{y}x}$ ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!