Commit 8d1ea6ca authored by Michael Kohlhase's avatar Michael Kohlhase

replace_atrefi*_with_mtrefi

parent d52da642
\begin{mhmodnl}[creators=jusche]{antimagicsquare}{en}
\begin{definition}
An \defii{antimagic}{square} of order $n$ is an arrangement of the
\atrefi[integernumbers]{numbers}{integer} $1$ to $\power{n}2$ in a square, such that the
\mtrefi[integernumbers?integer]{numbers} $1$ to $\power{n}2$ in a square, such that the
sums of the $n$ rows, the $n$ columns and the two diagonals form a
\trefi[sequences]{sequence} of $\aplus{\atimes{2,n},2}$ consecutive
\trefis[integernumbers]{integer}.
......
......@@ -2,7 +2,7 @@
\begin{definition}
A \trefii[magicsquare]{magic}{square} is a
\defiiis[name=magic-square-primes]{magic}{square}{of prime} if all entries are
\atrefii[primenumber]{primes}{prime}{number}.
\mtrefi[primenumber?prime-number]{primes}.
\end{definition}
\end{mhmodnl}
\begin{mhmodnl}[creators=jusche]{sparseantimagicsquare}{en}
\begin{definition}
A \defiii{sparse}{antimagic}{square} of order $n$ is an arrangement of the
\atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that
\mtrefi[integernumbers?integer]{numbers} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that
the sums of the rows and the sums of the columns form a \trefi[sequences]{sequence}
of consecutive \trefis[integernumbers]{integer}.
\end{definition}
......
\begin{mhmodnl}[creators=jusche]{sparsetotallyantimagicsquare}{en}
\begin{definition}
A \defiii[name=sta-square]{sparse}{totally antimagic}{square} of order $n$
is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m <
is an arrangement of the \mtrefi[integernumbers?integer]{numbers} $1$ to $m$ ($m <
\power{n}2$) and zeros in a square, such that the sums of the rows, the columns and the
diagonals form a \trefi[sequences]{sequence} of consecutive
\trefis[integernumbers]{integer}.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment