Commit 8d1ea6ca by Michael Kohlhase

### replace_atrefi*_with_mtrefi

parent d52da642
 \begin{mhmodnl}[creators=jusche]{antimagicsquare}{en} \begin{definition} An \defii{antimagic}{square} of order $n$ is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $\power{n}2$ in a square, such that the \mtrefi[integernumbers?integer]{numbers} $1$ to $\power{n}2$ in a square, such that the sums of the $n$ rows, the $n$ columns and the two diagonals form a \trefi[sequences]{sequence} of $\aplus{\atimes{2,n},2}$ consecutive \trefis[integernumbers]{integer}. ... ...
 ... ... @@ -2,7 +2,7 @@ \begin{definition} A \trefii[magicsquare]{magic}{square} is a \defiiis[name=magic-square-primes]{magic}{square}{of prime} if all entries are \atrefii[primenumber]{primes}{prime}{number}. \mtrefi[primenumber?prime-number]{primes}. \end{definition} \end{mhmodnl}
 \begin{mhmodnl}[creators=jusche]{sparseantimagicsquare}{en} \begin{definition} A \defiii{sparse}{antimagic}{square} of order $n$ is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that \mtrefi[integernumbers?integer]{numbers} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that the sums of the rows and the sums of the columns form a \trefi[sequences]{sequence} of consecutive \trefis[integernumbers]{integer}. \end{definition} ... ...
 \begin{mhmodnl}[creators=jusche]{sparsetotallyantimagicsquare}{en} \begin{definition} A \defiii[name=sta-square]{sparse}{totally antimagic}{square} of order $n$ is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m < is an arrangement of the \mtrefi[integernumbers?integer]{numbers}$1$to$m$($m < \power{n}2\$) and zeros in a square, such that the sums of the rows, the columns and the diagonals form a \trefi[sequences]{sequence} of consecutive \trefis[integernumbers]{integer}. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!