Commit 9db52375 by Michael Kohlhase

### deprecating_\mtrefi

parent e0aff176
 \begin{mhmodnl}[creators=jusche]{antimagicsquare}{en} \begin{definition} An \defii{antimagic}{square} of order $n$ is an arrangement of the \mtrefii[naturalnumbers?natural-number]{natural}{numbers} $1$ to $\natpower{n}2$ in a \trefiis[naturalnumbers?natural-number]{natural}{number} $1$ to $\natpower{n}2$ in a square, such that the sums of the $n$ rows, the $n$ columns and the two diagonals form a \trefi[sequences]{sequence} of $\natplus{\nattimes{2,n},2}$ consecutive \trefiis[naturalnumbers]{natural}{number}. ... ...
 ... ... @@ -2,7 +2,7 @@ \begin{definition} Die \defii[name=magic-constant]{magische}{Konstante} oder \defii[name=magic-constant]{magische}{Summe} $\magicconstant$ ist die Summe jeder Zeile, Spalte und Diagonale eines \mtrefi[magicsquare?magic-square]{magischen Quadrates}. Spalte und Diagonale eines \trefii[magicsquare?magic-square]{magischen}{Quadrates}. Jedes \mtrefiii[normalmagicsquare?normal-magic-square]{normale}{magische}{Quadrat} der Ordnung $n$ hat eine eindeutige Konstante $\normalmagicconstant{n}$: $\fundefeq{n}{\normalmagicconstant{n}}{\ratdivide[frac]{\nattimes{n,\natplus{\natpower{n}2,1}}}2}$ ... ...
 ... ... @@ -2,7 +2,7 @@ \begin{definition} A \trefii[magicsquare]{magic}{square} is a \defiiis[name=magic-square-primes]{magic}{square}{of prime} if all entries are \mtrefi[primenumber?prime-number]{primes}. \trefis[primenumber?prime-number]{prime}. \end{definition} \end{mhmodnl}
 \begin{mhmodnl}[creators=jusche]{sparseantimagicsquare}{en} \begin{definition} A \defiii{sparse}{antimagic}{square} of order $n$ is an arrangement of the \mtrefi[integernumbers?integer]{numbers} $1$ to $m$ ($\natlessthan{m}{\natpower{n}2}$) \trefis[integernumbers?integer]{number} $1$ to $m$ ($\natlessthan{m}{\natpower{n}2}$) and zeros in a square, such that the sums of the rows and the sums of the columns form a \trefi[sequences]{sequence} of consecutive \trefis[integernumbers]{integer}. \end{definition} ... ...
 \begin{mhmodnl}[creators=jusche]{sparsetotallyantimagicsquare}{en} \begin{definition} A \defiii[name=sta-square]{sparse}{totally antimagic}{square} of order $n$ is an arrangement of the \mtrefi[integernumbers?integer]{numbers} $1$ to $m$ arrangement of the \trefis[integernumbers?integer]{number} $1$ to $m$ ($\natlessthan{m}{\natpower{n}2}$) and zeros in a square, such that the sums of the rows, the columns and the diagonals form a \trefi[sequences]{sequence} of consecutive \trefis[integernumbers]{integer}. ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!