Commit 9db52375 authored by Michael Kohlhase's avatar Michael Kohlhase

deprecating_\mtrefi

parent e0aff176
\begin{mhmodnl}[creators=jusche]{antimagicsquare}{en}
\begin{definition}
An \defii{antimagic}{square} of order $n$ is an arrangement of the
\mtrefii[naturalnumbers?natural-number]{natural}{numbers} $1$ to $\natpower{n}2$ in a
\trefiis[naturalnumbers?natural-number]{natural}{number} $1$ to $\natpower{n}2$ in a
square, such that the sums of the $n$ rows, the $n$ columns and the two diagonals form a
\trefi[sequences]{sequence} of $\natplus{\nattimes{2,n},2}$ consecutive
\trefiis[naturalnumbers]{natural}{number}.
......
......@@ -2,7 +2,7 @@
\begin{definition}
Die \defii[name=magic-constant]{magische}{Konstante} oder
\defii[name=magic-constant]{magische}{Summe} $\magicconstant$ ist die Summe jeder Zeile,
Spalte und Diagonale eines \mtrefi[magicsquare?magic-square]{magischen Quadrates}.
Spalte und Diagonale eines \trefii[magicsquare?magic-square]{magischen}{Quadrates}.
Jedes \mtrefiii[normalmagicsquare?normal-magic-square]{normale}{magische}{Quadrat} der
Ordnung $n$ hat eine eindeutige Konstante $\normalmagicconstant{n}$:
\[\fundefeq{n}{\normalmagicconstant{n}}{\ratdivide[frac]{\nattimes{n,\natplus{\natpower{n}2,1}}}2}\]
......
......@@ -2,7 +2,7 @@
\begin{definition}
A \trefii[magicsquare]{magic}{square} is a
\defiiis[name=magic-square-primes]{magic}{square}{of prime} if all entries are
\mtrefi[primenumber?prime-number]{primes}.
\trefis[primenumber?prime-number]{prime}.
\end{definition}
\end{mhmodnl}
\begin{mhmodnl}[creators=jusche]{sparseantimagicsquare}{en}
\begin{definition}
A \defiii{sparse}{antimagic}{square} of order $n$ is an arrangement of the
\mtrefi[integernumbers?integer]{numbers} $1$ to $m$ ($\natlessthan{m}{\natpower{n}2}$)
\trefis[integernumbers?integer]{number} $1$ to $m$ ($\natlessthan{m}{\natpower{n}2}$)
and zeros in a square, such that the sums of the rows and the sums of the columns form a
\trefi[sequences]{sequence} of consecutive \trefis[integernumbers]{integer}.
\end{definition}
......
\begin{mhmodnl}[creators=jusche]{sparsetotallyantimagicsquare}{en}
\begin{definition}
A \defiii[name=sta-square]{sparse}{totally antimagic}{square} of order $n$ is an
arrangement of the \mtrefi[integernumbers?integer]{numbers} $1$ to $m$
arrangement of the \trefis[integernumbers?integer]{number} $1$ to $m$
($\natlessthan{m}{\natpower{n}2}$) and zeros in a square, such that the sums of the
rows, the columns and the diagonals form a \trefi[sequences]{sequence} of consecutive
\trefis[integernumbers]{integer}.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment