Commit cf102666 by Michael Kohlhase

### debugging

parent 851c80f5
 ... ... @@ -4,7 +4,7 @@ \atrefi[integernumbers]{numbers}{integer} $1$ to $\power{n}2$ in a square, such that the sums of the $n$ rows, the $n$ columns and the two diagonals form a \trefi[sequences]{sequence} of $\aplus{\atimes{2,n},2}$ consecutive \trefi[integernumbers]{integers}. \trefis[integernumbers]{integer}. \end{definition} \end{mhmodnl}
 \begin{mhmodnl}[creators=jusche]{heterosquare}{en} \begin{definition} A \defi{heterosquare} of order $n$ is an arrangement of the \trefi[integernumbers]{integers} $1$ to $\power{n}2$ in a square, such that the \trefis[integernumbers]{integer} $1$ to $\power{n}2$ in a square, such that the rows, columns, and diagonals all sum to different values. \end{definition} \end{mhmodnl} ... ...
 \begin{mhmodnl}[creators=jusche]{magicseriessquare}{en} \begin{definition} A \defii{magic}{series} of order $n$ is a \trefi[set]{set} of $n$ distinct positive \trefi[integernumbers]{integers} less or equal to $\power{n}2$ adding up to the positive \trefis[integernumbers]{integer} less or equal to $\power{n}2$ adding up to the \trefii[magicconstant]{magic}{constant} $n(\power{n}2+1)/2$ of the \trefii[magicsquare]{magic}{square} of order $n$. \end{definition} ... ...
 \begin{mhmodnl}[creators=jusche]{magicsquare}{en} \begin{definition} A \defii{magic}{square} is an arrangement of numbers (usually \trefi[integernumbers]{integers}) in a square grid, where the numbers in each row, and \trefis[integernumbers]{integer}) in a square grid, where the numbers in each row, and in each column, and the numbers in the forward and backward main diagonals, all add up to the same number. \end{definition} ... ...
 \begin{mhmodnl}[creators=jusche]{normalmagicsquare}{en} \begin{definition} A \trefii[magicsquare]{magic}{square} that contains the \trefi[integernumbers]{integers} from $1$ to $\power{n}2$ is called a \trefis[integernumbers]{integer} from $1$ to $\power{n}2$ is called a \defiii{normal}{magic}{square}. \end{definition} \end{mhmodnl} ... ...
 ... ... @@ -3,7 +3,7 @@ A \defiii{sparse}{antimagic}{square} of order $n$ is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that the sums of the rows and the sums of the columns form a \trefi[sequences]{sequence} of consecutive \trefi[integernumbers]{integers}. of consecutive \trefis[integernumbers]{integer}. \end{definition} \end{mhmodnl}
 ... ... @@ -4,7 +4,7 @@ is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that the sums of the rows, the columns and the diagonals form a \trefi[sequences]{sequence} of consecutive \trefi[integernumbers]{integers}. \trefis[integernumbers]{integer}. \end{definition} \end{mhmodnl}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment