Commit cf102666 authored by Michael Kohlhase's avatar Michael Kohlhase

debugging

parent 851c80f5
......@@ -4,7 +4,7 @@
\atrefi[integernumbers]{numbers}{integer} $1$ to $\power{n}2$ in a square, such that the
sums of the $n$ rows, the $n$ columns and the two diagonals form a
\trefi[sequences]{sequence} of $\aplus{\atimes{2,n},2}$ consecutive
\trefi[integernumbers]{integers}.
\trefis[integernumbers]{integer}.
\end{definition}
\end{mhmodnl}
\begin{mhmodnl}[creators=jusche]{heterosquare}{en}
\begin{definition}
A \defi{heterosquare} of order $n$ is an arrangement of the
\trefi[integernumbers]{integers} $1$ to $\power{n}2$ in a square, such that the
\trefis[integernumbers]{integer} $1$ to $\power{n}2$ in a square, such that the
rows, columns, and diagonals all sum to different values.
\end{definition}
\end{mhmodnl}
......
\begin{mhmodnl}[creators=jusche]{magicseriessquare}{en}
\begin{definition}
A \defii{magic}{series} of order $n$ is a \trefi[set]{set} of $n$ distinct
positive \trefi[integernumbers]{integers} less or equal to $\power{n}2$ adding up to the
positive \trefis[integernumbers]{integer} less or equal to $\power{n}2$ adding up to the
\trefii[magicconstant]{magic}{constant} $n(\power{n}2+1)/2$ of the
\trefii[magicsquare]{magic}{square} of order $n$.
\end{definition}
......
\begin{mhmodnl}[creators=jusche]{magicsquare}{en}
\begin{definition}
A \defii{magic}{square} is an arrangement of numbers (usually
\trefi[integernumbers]{integers}) in a square grid, where the numbers in each row, and
\trefis[integernumbers]{integer}) in a square grid, where the numbers in each row, and
in each column, and the numbers in the forward and backward main diagonals, all add up
to the same number.
\end{definition}
......
\begin{mhmodnl}[creators=jusche]{normalmagicsquare}{en}
\begin{definition}
A \trefii[magicsquare]{magic}{square} that contains the
\trefi[integernumbers]{integers} from $1$ to $\power{n}2$ is called a
\trefis[integernumbers]{integer} from $1$ to $\power{n}2$ is called a
\defiii{normal}{magic}{square}.
\end{definition}
\end{mhmodnl}
......
......@@ -3,7 +3,7 @@
A \defiii{sparse}{antimagic}{square} of order $n$ is an arrangement of the
\atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m < \power{n}2$) and zeros in a square, such that
the sums of the rows and the sums of the columns form a \trefi[sequences]{sequence}
of consecutive \trefi[integernumbers]{integers}.
of consecutive \trefis[integernumbers]{integer}.
\end{definition}
\end{mhmodnl}
......@@ -4,7 +4,7 @@
is an arrangement of the \atrefi[integernumbers]{numbers}{integer} $1$ to $m$ ($m <
\power{n}2$) and zeros in a square, such that the sums of the rows, the columns and the
diagonals form a \trefi[sequences]{sequence} of consecutive
\trefi[integernumbers]{integers}.
\trefis[integernumbers]{integer}.
\end{definition}
\end{mhmodnl}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment