Commit 7423d5e2 by Michael Kohlhase

### debugging

parent f5063d84
 ... ... @@ -2,7 +2,7 @@ \begin{definition} Sei $\defeq\cP{\mvstructure{P,\poleOp}}$ ein \mtrefii[partial-order?poset]{geordnete}{Menge}, dann nennen wir $\sseteq{F}P$ einen \defi[name=]{Filter}, falls \defi[name=filter]{Filter}, falls \begin{enumerate} \item $F\ne\eset$ \mtrefiii[updownset?upset]{nach}{unten}{abgeschlossen} ist \item F"ur alle $\inset{x,y}F$ gibt es ein Element $\inset{z}F$ so da"s $\pole{z}x$ ... ...
 \begin{mhmodnl}[creators=miko]{leastgreatest}{en} \begin{definition} Let $\mvstructure{S,\poleOp}$ be a \trefii[partial-order]{poset} and $\sseteq{T}S$, then Let $\mvstructure{S,\poleOp}$ be a \trefi[partial-order]{poset} and $\sseteq{T}S$, then we call an element $\inset{t}T$ the \defi{least} (or \defi[name=least]{smallest} or \defi[name=least]{minimal}) element of $T$, iff $\pole{t}{\primvar{t}}$ for all $\inset{\primvar{t}}T$. ... ...
 ... ... @@ -11,7 +11,7 @@ \begin{definition} We call a structure $\mvstructure{S,\poleOp}$ of a set $S$ and a \trefi{partial}{ordering} $\poleOp$ an \defiii[name=poset]{partially}{ordered}{set} or \trefii{partial}{ordering} $\poleOp$ an \defiii[name=poset]{partially}{ordered}{set} or \defi{poset}. \end{definition} \end{mhmodnl} ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!