Commit 7423d5e2 authored by Michael Kohlhase's avatar Michael Kohlhase


parent f5063d84
......@@ -2,7 +2,7 @@
Sei $\defeq\cP{\mvstructure{P,\poleOp}}$ ein
\mtrefii[partial-order?poset]{geordnete}{Menge}, dann nennen wir $\sseteq{F}P$ einen
\defi[name=]{Filter}, falls
\defi[name=filter]{Filter}, falls
\item $F\ne\eset$ \mtrefiii[updownset?upset]{nach}{unten}{abgeschlossen} ist
\item F"ur alle $\inset{x,y}F$ gibt es ein Element $\inset{z}F$ so da"s $\pole{z}x$
Let $\mvstructure{S,\poleOp}$ be a \trefii[partial-order]{poset} and $\sseteq{T}S$, then
Let $\mvstructure{S,\poleOp}$ be a \trefi[partial-order]{poset} and $\sseteq{T}S$, then
we call an element $\inset{t}T$ the \defi{least} (or \defi[name=least]{smallest} or
\defi[name=least]{minimal}) element of $T$, iff $\pole{t}{\primvar{t}}$ for all
......@@ -11,7 +11,7 @@
We call a structure $\mvstructure{S,\poleOp}$ of a set $S$ and a
\trefi{partial}{ordering} $\poleOp$ an \defiii[name=poset]{partially}{ordered}{set} or
\trefii{partial}{ordering} $\poleOp$ an \defiii[name=poset]{partially}{ordered}{set} or
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment