Commit a054b285 authored by Michael Kohlhase's avatar Michael Kohlhase


parent 652e3237
A function whose \trefi[functions]{domain} is a
\trefii[cartesian-product]{Cartesian}{product} can be seen as a function taking
multpile \trefis[functions]{argument}. The \defi{arity} (also called
\defi[name=arity]{rank}, \defi[name=arity]{adicity}, \defi[name=arity]{valency}.
$\fun{f}{\ncartli{A}1k}{B}$ is $k$.
A \trefi[functions]{function} of \trefi{arity} $k$ is called
\defi[name=nary]{$k$-ary}. For concrete $k$ we use \defi{unary} ($k=1$), \defi{binary}
($k=2$), and \defi{ternary} ($k=3$). An object $o$ can be thought of as a
\trefi[functions]{function} taking no \trefis[functions]{argument} and always
returning $o$. We speak of a \defi{nullary} function in this case. Finally, any
\mtrefi[?nary]{$n$-ary} function is called \defi{finitary}, if we do not want to
specify $n$.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment