...

Commits (3)
 ... ... @@ -3,18 +3,18 @@ A function whose \trefi[functions]{domain} is a \trefii[cartesian-product]{Cartesian}{product} can be seen as a function taking multpile \trefis[functions]{argument}. The \defi{arity} (also called \defi[name=arity]{rank}, \defi[name=arity]{adicity}, \defi[name=arity]{valency}. \defi[name=arity]{rank}, \defi[name=arity]{adicity}, \defi[name=arity]{valency}). $\fun{f}{\ncartli{A}1k}{B}$ is $k$. \end{definition} \begin{definition} A \trefi[functions]{function} of \trefi{arity} $k$ is called \defi[name=nary]{$k$-ary}. For concrete $k$ we use \defi{unary} ($k=1$), \defi{binary} ($k=2$), and \defi{ternary} ($k=3$). An object $o$ can be thought of as a \trefi[functions]{function} taking no \trefis[functions]{argument} and always returning $o$. We speak of a \defi{nullary} function in this case. Finally, any \mtrefi[?nary]{$n$-ary} function is called \defi{finitary}, if we do not want to specify $n$. \defi[name=nary]{$k$-ary}. For concrete $k$ we use \defi{unary} or \defi[name=unary]{univariate} ($k=1$), \defi{binary} ($k=2$), and \defi{ternary} ($k=3$). An object $o$ can be thought of as a \trefi[functions]{function} taking no \trefis[functions]{argument} and always returning $o$. We speak of a \defi{nullary} function in this case. Finally, any \mtrefi[?nary]{$n$-ary} function is called \defi{finitary}, if we do not want to specify $n$. \end{definition} \end{mhmodnl} ... ...