Commit 0a6ab022 authored by Michael Kohlhase's avatar Michael Kohlhase

debugging

parent d14deb6b
......@@ -3,7 +3,7 @@
An \defiii{abstract}{reduction}{system} (or
\defiii[name=abstract-reduction-system]{abstract}{rewriting}{system}, or
\defi[name=abstract-reduction-system]{ARS}) $\mvstructure{A,R}$ consists of a set $A$
together with a relation $\sseteq{R}{\twodim{A}}$. The relation $R$ is written as
together with a \defii{reduction}{relation} $\sseteq{R}{\twodim{A}}$. The relation $R$ is written as
$\arsRconvOp{R}$ or simply as $\arsconvOp$.
The \trefii[transitive-closure]{transitive-reflexive}{closure} of $\arsconvOp$ is
......
......@@ -5,25 +5,25 @@
\symdef[name=arsconv]{arsconvOp}{\mathrel\rightarrow}
\symvariant{arsconvOp}{1}{\rightarrow^1}
\symdef{arsconv}[2]{\infix[p=300]{\arsconvOp}{#1}{#2}}
\symdef[name=reduction-relation]{arsconv}[2]{\infix[p=300]{\arsconvOp}{#1}{#2}}
\symtest{arsconv}{\arsconv{A}B}
\symvariant{arsconv}[2]{1}{\infix[p=300]{\arsconvOp[1]}{#1}{#2}}
\symtest[variant=1]{arsconv}{\arsconv[1]AB}
\symdef[name=arsRconv]{arsRconvOp}[1]{\mathrel{\rightarrow_{#1}}}
\symdef[noverb,name=arsRconv]{arsRconvOp}[1]{\mathrel{\rightarrow_{#1}}}
\symvariant{arsRconvOp}[1]{1}{\rightarrow^1_{#1}}
\symdef{arsRconv}[3]{\infix[p=300]{\arsRconvOp{#1}}{#2}{#3}}
\symdef[noverb]{arsRconv}[3]{\infix[p=300]{\arsRconvOp{#1}}{#2}{#3}}
\symtest{arsRconv}{\arsRconv{R}AB}
\symvariant{arsRconv}[3]{1}{\infix[p=300]{\arsRconvOp[1]{#1}}{#2}{#3}}
\symtest[variant=1]{arsRconv}{\arsRconv[1]{R}AB}
\symdef[name=arsconvtr]{arsconvtrOp}{\mathrel{\rightarrow^*}}
\symdef{arsconvtr}[2]{\infix[p=300]{\arsconvtrOp}{#1}{#2}}
\symdef{arsconvtrOp}{\mathrel{\rightarrow^*}}
\symdef[name=transitive-closure]{arsconvtr}[2]{\infix[p=300]{\arsconvtrOp}{#1}{#2}}
\symtest{arsconvtr}{\arsconvtr{A}B}
\symdef[name=arsRconvtr]{arsRconvtrOp}[1]{\mathrel{\rightarrow_{#1}^*}}
\symdef{arsRconvtr}[3]{\infix[p=300]{\arsRconvtrOp{#1}}{#2}{#3}}
\symdef[noverb,name=arsRconvtr]{arsRconvtrOp}[1]{\mathrel{\rightarrow_{#1}^*}}
\symdef[noverb]{arsRconvtr}[3]{\infix[p=300]{\arsRconvtrOp{#1}}{#2}{#3}}
\symtest{arsRconvtr}{\arsRconvtr{R}AB}
\symiii*{abstract}{reduction}{system}
\end{modsig}
......
\begin{modsig}[creators=miko]{alpharenaming}
\symdef[name=alphaeq]{alphaeqFN}{\alpha}
\symdef{alphaeqRel}{\mathrel{=_{\alphaeqFN}}}
\symtest[name=alphaeq]{alphaeqRel}{\alphaeqRel}
\symdef[name=alphabetic-variant]{alphaeqRel}{\mathrel{=_{\alphaeqFN}}}
\symtest[name=alphabetic-variant]{alphaeqRel}{\alphaeqRel}
\symdef[name=nalphaeq]{nalphaeqRel}{\mathrel{\ne_{\alphaeqFN}}}
\symtest[name=nalphaeq]{nalphaeqRel}{\nalphaeqRel}
\symdef[name=alphabetic-variant]{alphaeq}[1]{\mixfixa[p=300]{}{#1}{}\alphaeqRel}
\symtest[name=alphabetic-variant]{alphaeq}{\alphaeq{a,b,c}}
\symdef{alphaeq}[1]{\mixfixa[p=300]{}{#1}{}\alphaeqRel}
\symtest{alphaeq}{\alphaeq{a,b,c}}
\symdef[noverb,name=nalphaeq]{nalphaeqRel}{\mathrel{\ne_{\alphaeqFN}}}
\symtest[name=nalphaeq]{nalphaeqRel}{\nalphaeqRel}
\symdef{nalphaeq}[2]{\infix[p=300]\nalphaeqRel{#1}{#2}}
\symdef[noverb]{nalphaeq}[2]{\infix[p=300]\nalphaeqRel{#1}{#2}}
\symtest{nalphaeq}{\nalphaeq{a}b}
\symii{alphabetic}{variant}
\symi{variant}
\end{modsig}
%%% Local Variables:
%%% mode: latex
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment