Commit 0a6ab022 by Michael Kohlhase

### debugging

parent d14deb6b
 ... ... @@ -3,7 +3,7 @@ An \defiii{abstract}{reduction}{system} (or \defiii[name=abstract-reduction-system]{abstract}{rewriting}{system}, or \defi[name=abstract-reduction-system]{ARS}) $\mvstructure{A,R}$ consists of a set $A$ together with a relation $\sseteq{R}{\twodim{A}}$. The relation $R$ is written as together with a \defii{reduction}{relation} $\sseteq{R}{\twodim{A}}$. The relation $R$ is written as $\arsRconvOp{R}$ or simply as $\arsconvOp$. The \trefii[transitive-closure]{transitive-reflexive}{closure} of $\arsconvOp$ is ... ...
 ... ... @@ -5,25 +5,25 @@ \symdef[name=arsconv]{arsconvOp}{\mathrel\rightarrow} \symvariant{arsconvOp}{1}{\rightarrow^1} \symdef{arsconv}[2]{\infix[p=300]{\arsconvOp}{#1}{#2}} \symdef[name=reduction-relation]{arsconv}[2]{\infix[p=300]{\arsconvOp}{#1}{#2}} \symtest{arsconv}{\arsconv{A}B} \symvariant{arsconv}[2]{1}{\infix[p=300]{\arsconvOp[1]}{#1}{#2}} \symtest[variant=1]{arsconv}{\arsconv[1]AB} \symdef[name=arsRconv]{arsRconvOp}[1]{\mathrel{\rightarrow_{#1}}} \symdef[noverb,name=arsRconv]{arsRconvOp}[1]{\mathrel{\rightarrow_{#1}}} \symvariant{arsRconvOp}[1]{1}{\rightarrow^1_{#1}} \symdef{arsRconv}[3]{\infix[p=300]{\arsRconvOp{#1}}{#2}{#3}} \symdef[noverb]{arsRconv}[3]{\infix[p=300]{\arsRconvOp{#1}}{#2}{#3}} \symtest{arsRconv}{\arsRconv{R}AB} \symvariant{arsRconv}[3]{1}{\infix[p=300]{\arsRconvOp[1]{#1}}{#2}{#3}} \symtest[variant=1]{arsRconv}{\arsRconv[1]{R}AB} \symdef[name=arsconvtr]{arsconvtrOp}{\mathrel{\rightarrow^*}} \symdef{arsconvtr}[2]{\infix[p=300]{\arsconvtrOp}{#1}{#2}} \symdef{arsconvtrOp}{\mathrel{\rightarrow^*}} \symdef[name=transitive-closure]{arsconvtr}[2]{\infix[p=300]{\arsconvtrOp}{#1}{#2}} \symtest{arsconvtr}{\arsconvtr{A}B} \symdef[name=arsRconvtr]{arsRconvtrOp}[1]{\mathrel{\rightarrow_{#1}^*}} \symdef{arsRconvtr}[3]{\infix[p=300]{\arsRconvtrOp{#1}}{#2}{#3}} \symdef[noverb,name=arsRconvtr]{arsRconvtrOp}[1]{\mathrel{\rightarrow_{#1}^*}} \symdef[noverb]{arsRconvtr}[3]{\infix[p=300]{\arsRconvtrOp{#1}}{#2}{#3}} \symtest{arsRconvtr}{\arsRconvtr{R}AB} \symiii*{abstract}{reduction}{system} \end{modsig} ... ...
 \begin{modsig}[creators=miko]{alpharenaming} \symdef[name=alphaeq]{alphaeqFN}{\alpha} \symdef{alphaeqRel}{\mathrel{=_{\alphaeqFN}}} \symtest[name=alphaeq]{alphaeqRel}{\alphaeqRel} \symdef[name=alphabetic-variant]{alphaeqRel}{\mathrel{=_{\alphaeqFN}}} \symtest[name=alphabetic-variant]{alphaeqRel}{\alphaeqRel} \symdef[name=nalphaeq]{nalphaeqRel}{\mathrel{\ne_{\alphaeqFN}}} \symtest[name=nalphaeq]{nalphaeqRel}{\nalphaeqRel} \symdef[name=alphabetic-variant]{alphaeq}[1]{\mixfixa[p=300]{}{#1}{}\alphaeqRel} \symtest[name=alphabetic-variant]{alphaeq}{\alphaeq{a,b,c}} \symdef{alphaeq}[1]{\mixfixa[p=300]{}{#1}{}\alphaeqRel} \symtest{alphaeq}{\alphaeq{a,b,c}} \symdef[noverb,name=nalphaeq]{nalphaeqRel}{\mathrel{\ne_{\alphaeqFN}}} \symtest[name=nalphaeq]{nalphaeqRel}{\nalphaeqRel} \symdef{nalphaeq}[2]{\infix[p=300]\nalphaeqRel{#1}{#2}} \symdef[noverb]{nalphaeq}[2]{\infix[p=300]\nalphaeqRel{#1}{#2}} \symtest{nalphaeq}{\nalphaeq{a}b} \symii{alphabetic}{variant} \symi{variant} \end{modsig} %%% Local Variables: %%% mode: latex ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment