Commit 2a3bc980 by Michael Kohlhase

### changing_the_optional_value_of_\defi_and_friends_from_the_name_to_a_keyval_argument

parent efa1421c
 \begin{mhmodnl}[creators=miko]{abstract-reduction-system}{en} \begin{definition} An \defiii{abstract}{reduction}{system} (or \defiii[abstract-reduction-system]{abstract}{rewriting}{system}, or \defi[abstract-reduction-system]{ARS}) $\mvstructure{A,R}$ consists of a set $A$ \defiii[name=abstract-reduction-system]{abstract}{rewriting}{system}, or \defi[name=abstract-reduction-system]{ARS}) $\mvstructure{A,R}$ consists of a set $A$ together with a relation $\sseteq{R}{\twodim{A}}$. The relation $R$ is written as $\arsRconvOp{R}$ or simply as $\arsconvOp$. ... ...
 \begin{mhmodnl}[creators=miko]{alpharenaming}{de} \begin{definition} Wir nennen eine Formel $\bA$ eine \defii[alphabetic-variant]{alphabetische}{Variante} von $\bB$ (oder \adefii[alphabetic-variant]{$\alphaeqFN$-gleich}{alpha}{gleich}; Wir nennen eine Formel $\bA$ eine \defii[name=alphabetic-variant]{alphabetische}{Variante} von $\bB$ (oder \adefii[name=alphabetic-variant]{$\alphaeqFN$-gleich}{alpha}{gleich}; schreibe $\alphaeq{\bA,\bB}$), wenn $\bB$ aus $\bA$ hervorgeht durch systematische Umbenennung gebundener Variablen. \end{definition} ... ...
 \begin{mhmodnl}[creators=jusche]{alpharenaming}{en} \begin{definition} We call a formula $\bA$ an \defii{alphabetic}{variant} of $\bB$ (or \adefii[alphabetic-variant]{$\alphaeqFN$-equal}{alpha}{equal}; write \adefii[name=alphabetic-variant]{$\alphaeqFN$-equal}{alpha}{equal}; write $\alphaeq{\bA,\bB}$), iff $\bB$ can be obtained from $\bA$ by systematically renaming bound variables. \end{definition} ... ...
 ... ... @@ -4,7 +4,7 @@ $\mvstructure{A,R}$ \begin{itemize} \item has the \defii{diamond}{property} (or is \defii[diamond-property]{strongly}{confluent}), iff for every $\minset{a,b,c}A$ with \defii[name=diamond-property]{strongly}{confluent}), iff for every $\minset{a,b,c}A$ with $\arsRconv{R}ab$ and $\arsRconv{R}ac$ there is a $\inset{d}A$ with $\arsRconv{R}bd$ and $\arsRconv{R}cd$. \item is \defi{confluent}, iff for every $\minset{a,b,c}A$ with $\arsRconvtr{R}ab$ ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!