Newer
Older
fixmeta ?FrameworldMeta ❚
/T A blueprint problem theory for triangle scrolls
B
/|
/ |
/ |
/___|
A C
(nicer image: https://en.wikipedia.org/wiki/Right_triangle#/media/File:Rtriangle.svg)
❚
theory TriangleScroll_GeneralProblem =
A: point ❘ meta ?MetaAnnotations?label "A" ❙
B: point ❘ meta ?MetaAnnotations?label "B"❙
C: point ❘ meta ?MetaAnnotations?label "C"❙
❚
/T A blueprint problem theory for triangle scrolls that require a right angle
We use ?TriangleScroll_GeneralProblem and demand the angle at C to be 90° ❚
theory TriangleScroll_RightAngledProblem =
include ?TriangleScroll_GeneralProblem ❙
rightAngleBCA
: ⊦ ( ∠ B,C,A ) ≐ 90.0 ❘
meta ?MetaAnnotations?label s"∟${lverb C}" ❘
meta ?MetaAnnotations?description s"Right angle at ${lverb C}"
meta ?MetaAnnotations?problemTheory ?AngleSum/Problem ❙
meta ?MetaAnnotations?solutionTheory ?AngleSum/Solution ❙
meta ?MetaAnnotations?label s"∠${lverb B A C}" ❘
meta ?MetaAnnotations?description s"Angle at ${lverb A}"
meta ?MetaAnnotations?label s"∠${lverb A B C}" ❘
meta ?MetaAnnotations?description s"Angle at ${lverb B}"
meta ?MetaAnnotations?description s"Given a triangle ${lverb A B C} and two known angles, we can deduce the missing angle by the sum of interior angles in triangles always being 180°" ❙
= ⟨180.0 - (πl angleBAC) - (πl angleABC), sketch "By sum of interior angles = 180° in triangles"⟩ ❘
meta ?MetaAnnotations?label s"∠${lverb B C A}" ❘
meta ?MetaAnnotations?description s"The deduced angle by calculating 180° - ${lverb angleBAC} - ${lverb angleABC}"
meta ?MetaAnnotations?problemTheory ?OppositeLen/Problem ❙
meta ?MetaAnnotations?solutionTheory ?OppositeLen/Solution ❙
include ?TriangleScroll_RightAngledProblem ❙
meta ?MetaAnnotations?label s"${lverb B C}" ❘
meta ?MetaAnnotations?description s"Length of leg ${lverb B C}"
meta ?MetaAnnotations?label s"∠${lverb A B C}" ❘
meta ?MetaAnnotations?description s"Angle at ${lverb B}"
meta ?MetaAnnotations?description s"Given a triangle ${lverb A B C} right angled at ${lverb C}, the distance ${lverb A B} can be computed from the angle at ${lverb B} and the distance ${lverb B C}" ❙
deducedLineCA
: Σ x:ℝ . ⊦ (d- C A) ≐ x ❘
= ⟨(tan (πl angleABC)) ⋅ (πl distanceBC), sketch "OppositeLen Scroll"⟩ ❘
meta ?MetaAnnotations?label s"${lverb C A}" ❘
meta ?MetaAnnotations?description s"The deduced length of the line ${lverb C A}"
// Doesn't typecheck, not sure why ❚
// theory Pythagoras =
meta ?MetaAnnotations?problemTheory ?Pythagoras/Problem ❙
meta ?MetaAnnotations?solutionTheory ?Pythagoras/Solution ❙
include ?TriangleScroll_RightAngledProblem ❙
meta ?MetaAnnotations?label "Pythagoras" ❙
meta ?MetaAnnotations?description "Given a ABC right-angled at C and lengths of both legs, we can compute the length of the hypotenuse via Pythagora's theorem" ❙
deducedHypotenuse
: Σ x:ℝ. ⊦ (d- A B) ≐ x ❘
= ⟨√ ((πl distanceAC) ⋅ (πl distanceAC) + (πl distanceBC) ⋅ (πl distanceBC)),
meta ?MetaAnnotations?description "Deduced length of hypotenuse AB"