Newer
Older
namespace http://mathhub.info/FrameIT/frameworld ❚
fixmeta ?FrameworldMeta ❚
This scrolls calculates the angle between a circle and a line.
The arguments required:
C - the circle
L - the line
A - the intersection point between C and L
base - the base as a circle
top - the top as a circle
H - the height as a line
A_on_L - a proof that A is on L
A_on_C - a proof that A is on C
This Scrolls returns:
deduceAngle - the Angle between C and L
❚
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
theory CircleLineAngleScroll =
meta ?MetaAnnotations?problemTheory ?CircleLineAngleScroll/Problem ❙
meta ?MetaAnnotations?solutionTheory ?CircleLineAngleScroll/Solution ❙
theory Problem =
// Define the plane (circle) , line and the intersection point ❙
C : circle ❘ meta ?MetaAnnotations?label "○C" ❙
L : line ❘ meta ?MetaAnnotations?label "L" ❙
A : point ❘ meta ?MetaAnnotations?label "A" ❙
// Intersectionpoint is on the plane and the line ❙
A_on_L : ⊦ A on L ❘ meta ?MetaAnnotations?label s" ${lverb A}∈${lverb L}"❙
A_on_C : ⊦ A VonC C ❘ meta ?MetaAnnotations?label s" ${lverb A}∈${lverb C}"❙
❚
theory Solution =
include ?CircleLineAngleScroll/Problem ❙
// if this gets evaluated to 90 degrees, the client will make another OrthogonalFact ❙
deduceAngle
: Σ x : ℝ . ⊦ angleCircleLine C L ≐ x ❘
= ⟨ radToDegree ( plcalc ( Pnormal ( planeCircle C ) ) ( directionL L ) ) , sketch "PlaneAngleScroll Scroll" ⟩ ❘
meta ?MetaAnnotations?label s"∠${lverb C L}" ❘
meta ?MetaAnnotations?description s"Caclculates the volume of a cone given the base and the height."
❙
meta ?MetaAnnotations?label "CircleLineAngleScroll" ❙
meta ?MetaAnnotations?description s" Caclculates the angle between the plane of ${lverb C} and the line ${lverb L} " ❙
❚
❚
/T
This scrolls convert the 90 degree angle between a circle and a line into an angle between three points.
The arguments required:
C - the circle
L - the line
orthogonalCircleLine - a proof that the angle between C and L is 90 degrees
planeLineAngle - the actual angle between C and L
A - the first point that defines the angle and also lies on H
B - the second point that defines the angle and also the intersection point between C and L
P - the first point that defines the angle and also lies on C
A_on_L - a proof that A is on L
B_on_L - a proof that B is on L
B_on_C - a proof that B is on C
P_on_C - a proof that P is on C
This Scrolls returns:
deduceAngle - the Angle between A,B,P
❚
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
theory CircleLineAngleToAngleScroll =
meta ?MetaAnnotations?problemTheory ?CircleLineAngleToAngleScroll/Problem ❙
meta ?MetaAnnotations?solutionTheory ?CircleLineAngleToAngleScroll/Solution ❙
theory Problem =
// Define the plane (circle) , line and the intersection point ❙
C : circle ❘ meta ?MetaAnnotations?label "○C" ❙
L : line ❘ meta ?MetaAnnotations?label "L" ❙
orthogonalCircleLine : ⊦ orthogCL C L ❘ meta ?MetaAnnotations?label s" ${lverb C}⊥${lverb L}" ❙
planeLineAngle : Σ x : ℝ . ⊦ angleCircleLine C L ≐ x ❘ meta ?MetaAnnotations?label s"∠${lverb C L}" ❙
A : point ❘ meta ?MetaAnnotations?label "A" ❙
B : point ❘ meta ?MetaAnnotations?label "B" ❙
P : point ❘ meta ?MetaAnnotations?label "P" ❙
// Intersectionpoint is on the plane and the line. ❙
A_on_L : ⊦ A on L ❘ meta ?MetaAnnotations?label s"${lverb A}∈${lverb L}"❙
B_on_L : ⊦ B on L ❘ meta ?MetaAnnotations?label s" ${lverb B}∈${lverb L}"❙
B_on_C : ⊦ B VonC C ❘ meta ?MetaAnnotations?label s" ${lverb B}∈${lverb C}"❙
P_on_C : ⊦ P VonC C ❘ meta ?MetaAnnotations?label s" ${lverb P}∈${lverb C}"❙
❚
theory Solution =
include ?CircleLineAngleToAngleScroll/Problem ❙
deduceAngle : Σ x : ℝ . ⊦ ( ∠ P,B,A ) ≐ x ❘
= ⟨ πl planeLineAngle , sketch "CastAngle" ⟩ ❘
meta ?MetaAnnotations?label s"∠${lverb P B A}" ❘
meta ?MetaAnnotations?description s"Caclculates the angle ∠${lverb P B A}"
❙
meta ?MetaAnnotations?label "CircleLineAngleToAngle" ❙
meta ?MetaAnnotations?description s"CircleLineAngle don't work as normal angles, therefore this scrolls converts a CircleLineAngle ∠${lverb C L} to a normal angle ∠${lverb P B A}, if it is 90°." ❙
❚
❚