Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/T Modular scrolls having to do with triangles ❚
namespace http://mathhub.info/FrameIT/frameworld ❚
fixmeta ?FrameworldMeta ❚
/T A blueprint problem theory for triangle scrolls
B
/|
/ |
/ |
/___|
A C
(nicer image: https://en.wikipedia.org/wiki/Right_triangle#/media/File:Rtriangle.svg)
❚
theory TriangleProblem =
A: point ❘ meta ?MetaAnnotations?label "A" ❙
B: point ❘ meta ?MetaAnnotations?label "B"❙
C: point ❘ meta ?MetaAnnotations?label "C"❙
❚
/T A blueprint problem theory for triangle scrolls that require a right angle
We use ?TriangleScroll_GeneralProblem and demand the angle at C to be 90° ❚
theory TriangleProblem_RightAngleAtC =
include ?TriangleProblem ❙
rightAngleC
: ⊦ ( ∠ B,C,A ) ≐ 90.0 ❘
meta ?MetaAnnotations?label s"⊾${lverb C}" ❘
meta ?MetaAnnotations?description s"${lverb A C} ⟂ ${lverb B C}: right angle at ${lverb C} as enclosed by legs ${lverb A C} and ${lverb B C}."
❙
❚
theory TriangleProblem_AngleAtA =
include ?TriangleProblem ❙
angleA
: Σ α: ℝ. ⊦ ( ∠ B,A,C ) ≐ α ❘
meta ?MetaAnnotations?label s"∠${lverb B A C}" ❘
meta ?MetaAnnotations?description s"Angle at ${lverb A} as enclosed by legs ${lverb A B} and ${lverb A C}"
❙
❚
theory TriangleProblem_AngleAtB =
include ?TriangleProblem ❙
angleB
: Σ β: ℝ. ⊦ ( ∠ A,B,C ) ≐ β ❘
meta ?MetaAnnotations?label s"∠${lverb A B C}" ❘
meta ?MetaAnnotations?description s"Angle at ${lverb B}"
❙
❚
theory AngleSum =
meta ?MetaAnnotations?problemTheory ?AngleSum/Problem ❙
meta ?MetaAnnotations?solutionTheory ?AngleSum/Solution ❙
theory Problem =
include ?TriangleProblem ❙
include ?TriangleProblem_AngleAtA ❙
include ?TriangleProblem_AngleAtB ❙
❚
theory Solution =
include ?AngleSum/Problem ❙
angleC
: Σ γ: ℝ. ⊦ ( ∠ B,C,A ) ≐ γ ❘
= ⟨180.0 - (πl angleA) - (πl angleB), sketch "By sum of interior angles = 180° in triangles"⟩ ❘
meta ?MetaAnnotations?label s"∠${lverb B C A}" ❘
meta ?MetaAnnotations?description s"The deduced angle by calculating 180° - ${lverb angleA} - ${lverb angleB}"
❙
// the description verbalizes angleC, hence must come after its declaration ❙
meta ?MetaAnnotations?label "AngleSum" ❙
meta ?MetaAnnotations?description s"Given a triangle △${lverb A B C} and two known angles, we can deduce the missing angle by: ${lverb angleC} = 180° - ${lverb angleA} - ${lverb angleB}." ❙
❚
❚
theory OppositeLen =
meta ?MetaAnnotations?problemTheory ?OppositeLen/Problem ❙
meta ?MetaAnnotations?solutionTheory ?OppositeLen/Solution ❙
theory Problem =
include ?TriangleProblem_RightAngleAtC ❙
distanceBC
: Σ x:ℝ . ⊦ ( d- B C ) ≐ x ❘
meta ?MetaAnnotations?label s"${lverb B C}" ❘
meta ?MetaAnnotations?description s"Length of leg ${lverb B C}"
❙
include ?TriangleProblem_AngleAtB ❙
❚
theory Solution =
include ?OppositeLen/Problem ❙
deducedLineCA
: Σ x:ℝ . ⊦ (d- C A) ≐ x ❘
= ⟨(tan (πl angleB)) ⋅ (πl distanceBC), sketch "OppositeLen Scroll"⟩ ❘
meta ?MetaAnnotations?label s"${lverb C A}" ❘
meta ?MetaAnnotations?description s"The deduced length of the line ${lverb C A}"
❙
// the description verbalizes deducedLineCA, hence must come after its declaration ❙
meta ?MetaAnnotations?label "OppositeLen" ❙
meta ?MetaAnnotations?description s"Given a triangle △${lverb A B C} right-angled at ⊾${lverb C}, the opposite side has length ${lverb deducedLineCA} = tan(${lverb angleB}) ⋅ ${lverb B C}." ❙
❚
❚
// Doesn't typecheck, not sure why ❚
// theory Pythagoras =
meta ?MetaAnnotations?problemTheory ?Pythagoras/Problem ❙
meta ?MetaAnnotations?solutionTheory ?Pythagoras/Solution ❙
theory Problem =
include ?TriangleScroll_RightAngledProblem ❙
distanceAC
: Σ x:ℝ. ⊦ (d- A C) ≐ x ❘
meta ?MetaAnnotations?description "Length of leg AC"
❙
distanceBC
: Σ x:ℝ. ⊦ (d- B C) ≐ x ❘
meta ?MetaAnnotations?description "Length of leg BC"
❙
❚
// theory Solution =
include ?Pythagoras/Problem ❙
meta ?MetaAnnotations?label "Pythagoras" ❙
meta ?MetaAnnotations?description "Given a ABC right-angled at C and lengths of both legs, we can compute the length of the hypotenuse via Pythagora's theorem" ❙
deducedHypotenuse
: Σ x:ℝ. ⊦ (d- A B) ≐ x ❘
= ⟨√ ((πl distanceAC) ⋅ (πl distanceAC) + (πl distanceBC) ⋅ (πl distanceBC)),
sketch "By Pythagora's theorem"⟩ ❘
meta ?MetaAnnotations?description "Deduced length of hypotenuse AB"
❙
❚
// ❚