Newer
Older
// The unordered pair {A,B} consists of exactly the two elements A and B❙
isuopair = [A,B,Z] ∀ͧ[x] x∈Z ⇔ x =ͧ A ∨ x =ͧ B❙
pairing_axiom : {A,B} ⊦ ∃ͧ[Z] isuopair A B Z❙
= [A,B] pairing_axiom uexistsE ([z,pz] uexistsUniqueI pz
([y,py] extensionalityI ([x] (pz uforallE x) equiv_equivalence/trans
(equiv_equivalence/sym (py uforallE x)))))❙
pairingAxI : {A,B,Z,x} ⊦ isuopair A B Z ⟶ ⊦ x =ͧ A ∨ x =ͧ B ⟶ ⊦ x∈Z❘
= [A,B,Z,x,p,q] p uforallE x equivEr q❙
pairingAxE : {A,B,Z,x,C} ⊦ isuopair A B Z ⟶ ⊦ x∈Z ⟶ (⊦ x =ͧ A ⟶ ⊦ C) ⟶ (⊦ x =ͧ B ⟶ ⊦ C) ⟶ ⊦ C❘# 7 pairingAxE 6 8 9❘
= [A,B,Z,x,C,p,q,pa,pb] p uforallE x equivEl q orE pa pb❙
// The big union of a family of sets A consists of all the elements x of its sets X.❙
isbigunion = [A,Z] ∀ͧ[x] x∈Z ⇔ ∃ͧ[X] X∈A ∧ x∈X❙
union_axiom : {A} ⊦ ∃ͧ[Z] isbigunion A Z❙
= [A] union_axiom uexistsE ([z,pz] uexistsUniqueI pz
([y,py] extensionalityI ([x] (pz uforallE x) equiv_equivalence/trans
(equiv_equivalence/sym (py uforallE x)))))❙
unionAxI : {A,Z,X,x} ⊦ isbigunion A Z ⟶ ⊦ X∈A ⟶ ⊦ x∈X ⟶ ⊦ x∈Z❘
= [A,Z,X,x,p,pa,pb] p uforallE x equivEr (uexistsI X (andI pa pb))❙
unionAxE : {A,Z,x} ⊦ isbigunion A Z ⟶ ⊦ x∈Z ⟶ ⊦ ∃ͧ[X] X∈A ∧ x∈X❘# 5 unionAxE 4❘
= [A,Z,x,p,q] p uforallE x equivEl q❙
// Each subset B of the set A is an element of the powerset Z❙
ispowerset = [A,Z] ∀ͧ[B] B∈Z ⇔ (∀ͧ[x] x∈B ⇒ x∈A)❙
powerset_axiom : {A} ⊦ ∃ͧ[Z] ispowerset A Z❙
= [A] powerset_axiom uexistsE ([z,pz] uexistsUniqueI pz
([y,py] extensionalityI ([B] (pz uforallE B) equiv_equivalence/trans
(equiv_equivalence/sym (py uforallE B)))))❙
powersetAxI : {A,B,Z} ⊦ ispowerset A Z ⟶ ({x} ⊦ x∈B ⇒ x∈A) ⟶ ⊦ B∈Z❘
= [A,B,Z,p,q] p uforallE B equivEr (uforallI q)❙
powersetAxE : {A,B,Z} ⊦ ispowerset A Z ⟶ ⊦ B∈Z ⟶ {x} ⊦ x∈B ⇒ x∈A❘# 5 powersetAxE 4 6❘
= [A,B,Z,p,q,x] p uforallE B equivEl q uforallE x❙
// The resulting set consists of all elements x of A that satisfy predicate P❙
iscomprehension = [A,P,Z] ∀ͧ[x] x∈Z ⇔ x∈A ∧ (P x)❙
comprehension_axiom : {A,P} ⊦ ∃ͧ[Z] iscomprehension A P Z❙
comprehension_unique : {A,P} ⊦ ∃ꜝͧ[Z] iscomprehension A P Z❘
= [A,P] comprehension_axiom uexistsE ([z,pz] uexistsUniqueI pz
([y,py] extensionalityI ([x] (pz uforallE x) equiv_equivalence/trans
(equiv_equivalence/sym (py uforallE x)))))❙
comprehensionAxI : {A,P,Z,x} ⊦ iscomprehension A P Z ⟶ ⊦ x∈A ⟶ ⊦ P x ⟶ ⊦ x∈Z❘
= [A,P,Z,x,p,pa,pb] p uforallE x equivEr (andI pa pb)❙
comprehensionAxEl : {A,P,Z,x} ⊦ iscomprehension A P Z ⟶ ⊦ x∈Z ⟶ ⊦ x∈A❘# 6 comprehensionAxEl 5❘
= [A,P,Z,x,p,q] p uforallE x equivEl q andEl❙
comprehensionAxEr : {A,P,Z,x} ⊦ iscomprehension A P Z ⟶ ⊦ x∈Z ⟶ ⊦ P x❘# 6 comprehensionAxEr 5❘
= [A,P,Z,x,p,q] p uforallE x equivEl q andEr❙
// The resulting set is a replacement for A regarding function f❙
replacement_axiom : {f} ⊦ ∀ͧ[A] isfunction f A ⇒ ∃ͧ[Z] isreplacement f A Z❙
replacement_unique : {f,A} ⊦ isfunction f A ⟶ ⊦ ∃ꜝͧ[Z] isreplacement f A Z❘
= [f,A,p] replacement_axiom uforallE A implE p uexistsE ([z,pz] uexistsUniqueI pz
([y,py] extensionalityI ([x] (pz uforallE x) equiv_equivalence/trans
(equiv_equivalence/sym (py uforallE x)))))❙
// AS: do I need isfunction f A here?❙
replacementAxI : {f,A,Z,y} ⊦ isfunction f A ⟶ ⊦ isreplacement f A Z ⟶ ⊦ (∃ͧ[x] x∈A ∧ f x y) ⟶ ⊦ y∈Z❘
= [f,A,Z,y,pf,pr,q] pr uforallE y equivEr q❙
replacementAxE : {f,A,Z,y,C} ⊦ isfunction f A ⟶ ⊦ isreplacement f A Z ⟶ ⊦ y∈Z ⟶ ({x} ⊦ x∈A ⟶ ⊦ f x y ⟶ ⊦C) ⟶ ⊦C❘# 8 replacementAxE 6 7 9❘
= [f,A,Z,y,C,pf,pr,q,Q] pr uforallE y equivEl q uexistsE ([x,px] Q x (px andEl) (px andEr))❙
// Every set has a "smallest" element❙
isregular = ∀ͧ[A](∃ͧ[u] u∈A) ⇒ ∃ͧ[B] B∈A ∧ ¬(∃ͧ[x] x∈A ∧ x∈B)❙
regularity_axiom : ⊦ isregular❙
// AS: These are special cases of regularity. Maybe it should be moved to a file
containing features, but for now there is no suitable file❚
theory Acyclic =
include ?SetBase❙
in_acyclic : {A,B} ⊦ A∈B ⟶ ⊦ B∈A ⟶ ⊦ ⊥❙
in_acyclic0 : {A} ⊦ A∈A ⟶ ⊦ ⊥❘
= [A,p] in_acyclic p p❙
❚
theory InfinityAx =
// There exists an successor set A containing ∅ and for every element x of A, the successor
of x is a member of A as well.❙
include ?EmptySet❙
// abstract successor function s❙
issuccset = [s : set ⟶ set,A] ∅∈A ∧ ∀ͧ[x] x∈A ⇒ (s x)∈A❙
// AS: to fulfill pw_disjoint this definition has probably to be changed to
ischoice = [A,C] ∀ͧ[X] X∈A ⇒ (∃ꜝͧ[c] c∈C ⇒ c∈X)❙
// There exists a set C that shares an unique element c with each set X of A❙
// AS: Halmos (p60) gives this definition. all_nonempty might be enough❙
choice_axiom : ⊦ ∀ͧ[A] (all_nonempty A ∧ ispwdisjoint A) ⇒ ∃ͧ[C] ischoice A C❙
choiceI : {A} ⊦ all_nonempty A ⟶ ⊦ ispwdisjoint A ⟶ ⊦ ∃ͧ[C] ischoice A C❘
= [A,ne,pw] choice_axiom uforallE A implE (andI ne pw)❙
choiceE : {A} ⊦ (∃ͧ[C] ischoice A C) ⟶ ⊦ all_nonempty A❘# 2 choiceEl❘
= [A,p] all_nonemptyI ([X,pa] p uexistsE ([C,pb] pb uforallE X implE pa uexistsUniqueE
([c,q,Q] uexistsI c (q andEr))))❙
// AS: this proof is not be possible, since two sets A and B can have the same element❙
// choiceEr : {A} ⊦ (∃ͧ[C] ischoice A C) ⟶ ⊦ ispwdisjoint A❘// # 2 choiceEr❙
// = [A,p] ispwdisjointI ([X,Y,pa] tnd orE ([qa] qa orIl)
([qb] p uexistsE ([C,pb] aredisjointI ([x] notI ([pf] pb uforallE X implE (pa andEl)
uexistsUniqueE ([c,pc,Q] ❙