Skip to content
Snippets Groups Projects
Verified Commit b67e2648 authored by ColinRothgang's avatar ColinRothgang
Browse files

Fix extended category example

parent 89feeab9
No related branches found
No related tags found
No related merge requests found
......@@ -5,8 +5,9 @@
<output-test url="file:///test/LATIN2" />
<exclude-output />
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/scala" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/export/lf-scala" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/scala/latin2/sfol" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/scala/latin2/tptp" isTestSource="false" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
......@@ -30,7 +31,6 @@
<SOURCES />
</library>
</orderEntry>
<!-- this used to be <orderEntry type="library" name="scala-sdk-2.13.4" level="application" />-->
<orderEntry type="library" name="sbt: org.scala-lang:scala-library:2.13.4:jar" level="project" />
<orderEntry type="library" name="sbt: org.scala-lang.modules:scala-xml_2.13:2.1.0:jar" level="project" />
</component>
......
......@@ -31,20 +31,23 @@ theory CatExtended : latin:/?DPHOL =
proj2: {x:tm obj, y:tm obj} tm mor (prod x y) y ❙
/T prodUnivMorph: tm Πͭ [x:tm obj] Πͭ [y:tm obj] Πͭ [z:tm obj] Πͭ [f:tm (mor z x)] Πͭ [g:tm (mor z y)] mor z (prod @ x @ y) ❙
factorizesProjections: {x:tm obj, y:tm obj, z:tm obj, f:tm mor z x, g:tm mor z y, u:tm mor z (prod @ x @ y)} prop ❘ =
[x: tm obj, y: tm obj, z: tm obj, f: tm mor z x, g: tm mor z y, u:tm mor z (prod x y)]
u ◦ (proj1 x y) =ͭ f ∧ u ◦ (proj2 x y) =ͭ g ❘# factorizesProjs 4 5 6 ❙
factorizesProjections: {x:tm obj, y:tm obj, z:tm obj, f:tm mor z x, g:tm mor z y,
xy: tm obj, projX: tm mor xy x, projY: tm mor xy y, u:tm mor z (prod @ x @ y)} prop ❘ =
[x: tm obj, y: tm obj, z: tm obj, f: tm mor z x, g: tm mor z y, xy, projX, projY, u:tm mor z (prod x y)]
u ◦ projX =ͭ f ∧ u ◦ projY =ͭ g ❘# factorizesProjs 4 5 7 8 9 ❙
isUniqueMorphismWith: {x:tm obj, y:tm obj, p: {m:tm mor x y} prop, m:tm mor x y} prop ❘ =
[x: tm obj, y: tm obj, p: tm Πͭ [m:tm (mor x y)] bool, m: tm (mor x y)]
p m ∧ ∀ͭ[u:tm mor x y] p u ⇒ m =ͭ u ❙
isUniversalMorphismOfProduct: {x:tm obj, y:tm obj, z:tm obj, f:tm mor z x, g:tm mor z y, u:tm mor z (prod x y)} prop ❘ =
[x: tm obj, y: tm obj, z: tm obj, f: tm mor z x, g: tm mor z y, u:tm mor z (prod x y)]
isUniqueMorphismWith x y ([m:tm mor x y] factorizesProjs f g m) u ❘# isUnivMorProd 4 5 6 ❙
isProd: {x:tm obj, y:tm obj, xy: tm obj} bool ❘ = [x: tm obj, y: tm obj, xy: tm obj]
∀ͭ[z: tm obj] ∀ͭ[f: tm mor z x] ∀ͭ[g: tm mor z y] ∃ͭ [u: tm mor z xy] isUnivMorProd f g u ❙
prodUnivMorph_ax: ⊦ ∀ͭ[x: tm obj] ∀ͭ[y: tm obj] isProd x y (prod x y) ❙
isUniversalMorphismOfAProduct: {x:tm obj, y:tm obj, z:tm obj, f:tm mor z x, g:tm mor z y,
xy: tm obj, projX: tm mor xy x, projY: tm mor xy y, u:tm mor z xy} prop ❘ =
[x: tm obj, y: tm obj, z: tm obj, f: tm mor z x, g: tm mor z y, xy, projX, projY, u:tm mor z (prod x y)]
isUniqueMorphismWith x y ([m:tm mor x y] factorizesProjections x y z f g xy projX projY m) u ❘# isUnivMorProd 4 5 7 8 9 ❙
isProduct: {x:tm obj, y:tm obj, xy: tm obj, projX: tm mor xy x, projY: tm mor xy y} bool ❘ =
[x: tm obj, y: tm obj, xy: tm obj, projX, projY] ∀ͭ[z: tm obj] ∀ͭ[f: tm mor z x] ∀ͭ[g: tm mor z y]
∃ͭ [u: tm mor z xy] isUniversalMorphismOfAProduct x y z f g xy projX projY u ❘# isProd 3 4 5 ❙
prodUnivMorph_ax: ⊦ ∀ͭ[x: tm obj] ∀ͭ[y: tm obj] isProduct x y (prod x y) (proj1 x y) (proj2 x y) ❙
uniquenessProd: ⊦ ∀ͭ[x: tm obj] ∀ͭ[y: tm obj] ∀ͭ[z: tm obj]
isProd x y z ⇒ areIsomorphic z (prod x y) ❙
symmetricProd: ⊦ ∀ͭ[x: tm obj] ∀ͭ[y: tm obj] areIsomorphic (prod x y) (prod y x) ❙
uniquenessProd: ⊦ ∀ͭ[x: tm obj] ∀ͭ[y: tm obj] ∀ͭ[z: tm obj] ∀ͭ[f: tm mor z x] ∀ͭ[g: tm mor z y]
isProduct x y z f g ⇒ areIsomorphic z (prod x y) ❙
symmetricProd: ⊦ ∀ͭ[x: tm obj] ∀ͭ[y: tm obj] areIsomorphic (prod x y) (prod y x) ❘ = PROVE
......@@ -20,6 +20,7 @@ log+ debug
log+ tptp
log+ DHOLExporter
log+ DIHOLExporter
//log+ DPHOLExporter
//log+ TPTPExporter
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment