Skip to content
Snippets Groups Projects
Unverified Commit e664c585 authored by ColinRothgang's avatar ColinRothgang
Browse files

Extend peano numbers with addition and subtraction

parent 09c631c5
No related branches found
No related tags found
No related merge requests found
......@@ -13,22 +13,38 @@ theory Peano : latin:/?DHOLND =
axiom3 : ⊦ ∀ͭ[n: tm N] ¬(successor @ n =ͭ zero)❙
//Injectivity Axiom❙
axiom4 : ⊦ ∀ͭ[n: tm N] ∀ͭ[m: tm N] ((successor @ n =ͭ successor @ m) ⇒ (n =ͭ m))❙
axiom4 : ⊦ ∀ͭ[n: tm N] ∀ͭ[m: tm N] ((suc n =ͭ suc m) ⇒ (n =ͭ m))❙
//Induction Axiom❙
axiom5 : ⊦ ∀ͭ[X: tm N → bool] X @ zero ∧ (∀ͭ[n : tm N] X @ n ⇒ X @ (successor @ n)) ⇒ ∀ͭ[x: tm N] X @ x❙
axiom5 : ⊦ ∀ͭ[X: tm N → bool] X @ zero ∧ (∀ͭ[n : tm N] X @ n ⇒ X @ (suc n)) ⇒ ∀ͭ[x: tm N] X @ x❙
// Conjecture❙
conj : ⊦ ∀ͭ[x: tm N] (x =ͭ zero) ∨ (∃ͭ[y: tm N] successor @ y =ͭ x) ❘ = PROVE❙
conj : ⊦ ∀ͭ[x: tm N] (x =ͭ zero) ∨ (∃ͭ[y: tm N] suc y =ͭ x) ❘ = PROVE❙
// simpler conjecture❙
conj2 : ⊦ ∀ͭ[x: tm N] ([z: tm N] z =ͭ x) zero ∨ (∃ͭ[y: tm N] ([z: tm N] z =ͭ x) (successor @ y)) ❘ = PROVE❙
conj2 : ⊦ ∀ͭ[x: tm N] ([z: tm N] z =ͭ x) zero ∨ (∃ͭ[y: tm N] ([z: tm N] z =ͭ x) (suc y)) ❘ = PROVE❙
// even simpler conjecture❙
p = [x: tm N] [z: tm N] z =ͭ x ❙
conj3 : ⊦ ∀ͭ[x: tm N] (p x) zero ∨ (∃ͭ[y: tm N] (p x) (successor @ y)) ❘ = PROVE❙
conj3 : ⊦ ∀ͭ[x: tm N] (p x) zero ∨ (∃ͭ[y: tm N] (p x) (suc y)) ❘ = PROVE❙
//decl2 = successor @ (successor @ zero)❙
//decl2 = suc (suc zero)❙
//conj2 : ⊦ ¬(decl2 =ͭ zero) ❘ = PROVE❙
theory PlusMonus : latin:/?DHOLND =
include ?Peano ❙
induction_N: {n: tp, z: tm n, s: tm Πͭ [m: tm n] n} {m: tm N} tm n ❙
addition = induction_N
(Πͭ[m: tm N] N)
(λ [x: tm N] x)
(λ [u: tm Πͭ [m: tm N] N] λ [x: tm N] suc (u @ x)) ❙
addn : tm N ⟶ tm N ⟶ tm N ❘ = [m, n] (addition m) @ n ❘# 1 plus 2 ❙
predec : {n: tm N} tm N ❘ = induction_N N zero (λ [u] u) ❙
subtraction = induction_N
(Πͭ[m: tm N] N)
(λ [x: tm N] x)
(λ [u: tm Πͭ [m: tm N] N] λ [x: tm N] predec (u @ x)) ❙
subn : tm N ⟶ tm N ⟶ tm N ❘ = [m, n] (addition m) @ n ❘# 1 monus 2 ❙
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment