Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Foundation
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
MitM
Foundation
Commits
16c86135
Commit
16c86135
authored
4 years ago
by
ComFreek
Browse files
Options
Downloads
Patches
Plain Diff
add missing equality ND rules
parent
60fb75d5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
source/math.mmt
+97
-74
97 additions, 74 deletions
source/math.mmt
with
97 additions
and
74 deletions
source/math.mmt
+
97
−
74
View file @
16c86135
...
...
@@ -13,84 +13,84 @@ theory Metadata =
/T We define a formal language for basic mathematical objects in LF. ❚
theory Subtyping =
include ☞http://gl.mathhub.info/MMT/LFX/Subtyping?LFSubtyped ❙
include ☞http://gl.mathhub.info/MMT/LFX/Subtyping?LFSubtyped ❙
❚
/T First, some logic. ❚
theory Logic : http://gl.mathhub.info/MMT/LFX/TypedHierarchy?LFHierarchy =
include ☞http://gl.mathhub.info/MMT/LFX/Records?LFRecords ❙
include ☞http://cds.omdoc.org/urtheories?Ded ❙
include ☞http://gl.mathhub.info/MMT/LFX/Subtyping?LFWithVariance ❙
// rule rules?ApplyRule ❙
/T the type of booleans, i.e., all formulas are represented as terms of LF-type $prop$ ❙
// bool : type ❘ // = BOOL ❙
prop : type ❘ @ bool ❘ = BOOL ❙
/T one LF-type for each formula holding its proofs
For example, the LF type ⊦ 0 ≐ 1 is empty because that formula has no proofs.
Axioms are declared as constants of the corresponding type, e.g., a constant of type $⊦ true$ for the axiom of truth.❙
ded : prop ⟶ type ❘ # ⊦ 1 prec -500 ❘ role Judgment ❘ = DED ❙
ImplicitProof : {A} ⊦ A ❘ # ImplicitProof 1 ❙
rule lf?TermIrrelevanceRule (ded) ([A : prop] ImplicitProof A) ❙
/T Equality on terms. The type A is left implicit and can be inferred by MMT ❙
eq : {A:𝒰 100} A ⟶ A ⟶ bool ❘ # 2 ≐ 3 prec -5 ❘ role Eq ❘ // = EQUAL ❙
// coercion : {A : type, P : A ⟶ prop,a} ⊦ P a ⟶ ⟨ A | ([x] ⊦ P x) ⟩ ❘ # coerce 3 %I4❙
// coercion_theorem : {A : type,P : A ⟶ prop,a,p : ⊦ P a} ⊦ eq ⟨ A | ([x] ⊦ P x) ⟩ (coercion A P a p) a ❙
rule rules?BooleanLiterals ❙
// false_is_FALSE : ded (FALSE ≐ false) ❙
// true_is_TRUE : ded (TRUE ≐ true) ❙
not : bool ⟶ bool ❘ # ¬ 1 prec -100 ❙
neq : {A: 𝒰 100} A ⟶ A ⟶ prop ❘ # 2 ≠ 3 prec -5 ❘ = [A,a,b] ¬ (a ≐ b) ❙
and : bool ⟶ bool ⟶ bool❘# 1 ∧ 2 prec -110 ❙
or : bool ⟶ bool ⟶ bool ❘# 1 ∨ 2 prec -120 ❘ // = [A,B] ¬ (¬A ∧ ¬ B) ❙
implies : bool ⟶ bool ⟶ bool ❘# 1 ⇒ 2 prec -130 ❘ // = [A,B] B ∨ ¬A ❙
iff : bool ⟶ bool ⟶ bool ❘ # 1 ⇔ 2 prec -140 ❘// = [A,B] (A ⇒ B) ∧ (B ⇒ A) ❙
include ☞http://gl.mathhub.info/MMT/LFX/Records?LFRecords ❙
include ☞http://cds.omdoc.org/urtheories?Ded ❙
include ☞http://gl.mathhub.info/MMT/LFX/Subtyping?LFWithVariance ❙
// rule rules?ApplyRule ❙
/T the type of booleans, i.e., all formulas are represented as terms of LF-type $prop$ ❙
// bool : type ❘ // = BOOL ❙
prop : type ❘ @ bool ❘ = BOOL ❙
/T one LF-type for each formula holding its proofs
For example, the LF type ⊦ 0 ≐ 1 is empty because that formula has no proofs.
Axioms are declared as constants of the corresponding type, e.g., a constant of type $⊦ true$ for the axiom of truth.❙
ded : prop ⟶ type ❘ # ⊦ 1 prec -500 ❘ role Judgment ❘ = DED ❙
ImplicitProof : {A} ⊦ A ❘ # ImplicitProof 1 ❙
rule lf?TermIrrelevanceRule (ded) ([A : prop] ImplicitProof A) ❙
/T Equality on terms. The type A is left implicit and can be inferred by MMT ❙
eq : {A:𝒰 100} A ⟶ A ⟶ bool ❘ # 2 ≐ 3 prec -5 ❘ role Eq ❘ // = EQUAL ❙
// coercion : {A : type, P : A ⟶ prop,a} ⊦ P a ⟶ ⟨ A | ([x] ⊦ P x) ⟩ ❘ # coerce 3 %I4❙
// coercion_theorem : {A : type,P : A ⟶ prop,a,p : ⊦ P a} ⊦ eq ⟨ A | ([x] ⊦ P x) ⟩ (coercion A P a p) a ❙
rule rules?BooleanLiterals ❙
// false_is_FALSE : ded (FALSE ≐ false) ❙
// true_is_TRUE : ded (TRUE ≐ true) ❙
not : bool ⟶ bool ❘ # ¬ 1 prec -100 ❙
neq : {A: 𝒰 100} A ⟶ A ⟶ prop ❘ # 2 ≠ 3 prec -5 ❘ = [A,a,b] ¬ (a ≐ b) ❙
and : bool ⟶ bool ⟶ bool❘# 1 ∧ 2 prec -110 ❙
or : bool ⟶ bool ⟶ bool ❘# 1 ∨ 2 prec -120 ❘ // = [A,B] ¬ (¬A ∧ ¬ B) ❙
implies : bool ⟶ bool ⟶ bool ❘# 1 ⇒ 2 prec -130 ❘ // = [A,B] B ∨ ¬A ❙
iff : bool ⟶ bool ⟶ bool ❘ # 1 ⇔ 2 prec -140 ❘// = [A,B] (A ⇒ B) ∧ (B ⇒ A) ❙
forall : {A : 𝒰 100} (A ⟶ bool) ⟶ bool ❘ # ∀ 2 prec -100❙
exists : {A : 𝒰 100} (A ⟶ bool) ⟶ bool ❘ # ∃ 2 prec -100 ❘// = [A,f] ¬ ∀ [x:A] ¬ f x ❙
unique : {A : 𝒰 100} (A ⟶ bool) ⟶ A ⟶ bool ❘ = [A,P,x] ∀ [y:A] P y ⇒ y ≐ x ❘ # unique 2 3 ❙
exists_unique : {A : 𝒰 100} (A ⟶ bool) ⟶ bool ❘ # ∃! 2 prec -101 ❘ = [A,P] ∃ [x] (P x ∧ unique P x) ❙
forall : {A : 𝒰 100} (A ⟶ bool) ⟶ bool ❘ # ∀ 2 prec -100❙
exists : {A : 𝒰 100} (A ⟶ bool) ⟶ bool ❘ # ∃ 2 prec -100 ❘// = [A,f] ¬ ∀ [x:A] ¬ f x ❙
unique : {A : 𝒰 100} (A ⟶ bool) ⟶ A ⟶ bool ❘ = [A,P,x] ∀ [y:A] P y ⇒ y ≐ x ❘ # unique 2 3 ❙
exists_unique : {A : 𝒰 100} (A ⟶ bool) ⟶ bool ❘ # ∃! 2 prec -101 ❘ = [A,P] ∃ [x] (P x ∧ unique P x) ❙
/T Equality on types (semantics missing) ❙
tpeq : type ⟶ type ⟶ bool ❘ # 1 ≐≐ 2 prec -6 ❘ role Eq ❙
/T Equality on types (semantics missing) ❙
tpeq : type ⟶ type ⟶ bool ❘ # 1 ≐≐ 2 prec -6 ❘ role Eq ❙
❚
theory NaturalDeduction : ur:?LF =
include ?Logic ❙
tru_introduction : ⊦ true ❙
fals_elimination : {A} ⊦ false ⟶ ⊦ A ❙
fals_introduction : {A} ⊦ A ⟶ ⊦ ¬ A ⟶ ⊦ false ❙
forall_elim : {A : 𝒰 100, P : A ⟶ bool}⊦ ∀ P ⟶ {x : A}⊦ P x ❘ # forallE 3 4❙
forall_introduction : {A : 𝒰 100, P : A ⟶ bool, p : {x : A}⊦P x}⊦ ∀[x] P x ❘ # forallI 3 ❙
exists_intro : {A : 𝒰 100, P : A ⟶ bool, c:A} ⊦ (P c) ⟶ ⊦ ∃ [x] P x ❘ # existsI 4 ❙
include ?Logic ❙
tru_introduction : ⊦ true ❙
fals_elimination : {A} ⊦ false ⟶ ⊦ A ❙
fals_introduction : {A} ⊦ A ⟶ ⊦ ¬ A ⟶ ⊦ false ❙
forall_elim : {A : 𝒰 100, P : A ⟶ bool}⊦ ∀ P ⟶ {x : A}⊦ P x ❘ # forallE 3 4❙
forall_introduction : {A : 𝒰 100, P : A ⟶ bool, p : {x : A}⊦P x}⊦ ∀[x] P x ❘ # forallI 3 ❙
exists_intro : {A : 𝒰 100, P : A ⟶ bool, c:A} ⊦ (P c) ⟶ ⊦ ∃ [x] P x ❘ # existsI 4 ❙
exists_elim : {A : 𝒰 100, P : A ⟶ bool, C:bool} (⊦ ∃ [x:A] (P x)) ⟶ ({c:A} ⊦ (P c) ⟶ ⊦ C) ⟶ ⊦ C ❘# existsE 4 5❙
and_introduction : {A,B} ⊦ A ⟶ ⊦ B ⟶ ⊦ (A ∧ B) ❙
and_elim_left : {A,B} ⊦ (A ∧ B) ⟶ ⊦ A ❙
and_elim_right : {A,B} ⊦ (A ∧ B) ⟶ ⊦ B ❙
not_introduction : {A} (⊦ A ⟶ ⊦ false) ⟶ ⊦ ¬ A ❙
not_elim : {A} ⊦ ¬ ¬ A ⟶ ⊦ A ❙
and_introduction : {A,B} ⊦ A ⟶ ⊦ B ⟶ ⊦ (A ∧ B) ❙
and_elim_left : {A,B} ⊦ (A ∧ B) ⟶ ⊦ A ❙
and_elim_right : {A,B} ⊦ (A ∧ B) ⟶ ⊦ B ❙
not_introduction : {A} (⊦ A ⟶ ⊦ false) ⟶ ⊦ ¬ A ❙
not_elim : {A} ⊦ ¬ ¬ A ⟶ ⊦ A ❙
tnd : {A} ⊦ A ∨ ¬A ❘ // = [A: bool] not_introduction ([p : ⊦ (¬A ∧ ¬¬A)] fals_introduction (not_elim (and_elim_right p)) (and_elim_left p)) ❙
/T Some more rules for convenience. ❙
tnd : {A} ⊦ A ∨ ¬A ❘ // = [A: bool] not_introduction ([p : ⊦ (¬A ∧ ¬¬A)] fals_introduction (not_elim (and_elim_right p)) (and_elim_left p)) ❙
/T Some more rules for convenience. ❙
or_introduction_right : {A,B} ⊦ A ⟶ ⊦ (A ∨ B) ❘ # orinr 3❙
or_introduction_left : {A,B} ⊦ B ⟶ ⊦ (A ∨ B) ❘ # orinl 3❙
implication_introduction : {A,B} (⊦ A ⟶ ⊦ B) ⟶ ⊦ A ⇒ B ❘ # impli 3❙
...
...
@@ -99,12 +99,35 @@ theory NaturalDeduction : ur:?LF =
biimplication_elimination_right : {A,B}⊦ (A ⇔ B) ⟶ ⊦ (B ⇒ A) ❘ # bielr 3❙
or_elimination : {A,B,C} ⊦ (A ∨ B) ⟶ (⊦ A ⟶ ⊦ C) ⟶ (⊦ B ⟶ ⊦ C) ⟶ ⊦ C ❘ # orelim 4 5 6❙
modus_ponens : {A,B} (⊦ A ⇒ B) ⟶ ⊦ A ⟶ ⊦ B ❘# MP 3 4 ❙
/T basic axioms governing Equality. Again, all the type parameters can be left implicit ❙
eq_refl : {t:𝒰 100,A: t} ⊦ A ≐ A ❘ # eq_refl 2❙
eq_cong : {t : 𝒰 100, s : 𝒰 100, f : t ⟶ s, A : t, B: t}
⊦ A ≐ B ⟶ ⊦ (f A) ≐ (f B) ❘ # eq_cong 3 6❙
/T The only two basic axioms governing equality that we need (see 1).
Again, all the type parameters can be left implicit.
Ref. 1: https://web.archive.org/web/20201012120105/https://leanprover.github.io/logic_and_proof/natural_deduction_for_first_order_logic.html#equality ❙
eq_refl : {t:𝒰 100,A: t} ⊦ A ≐ A ❘ # eq_refl 2❙
eq_congProp : {t: 𝒰 100, P: t ⟶ prop, A: t, B: t} ⊦ A ≐ B ⟶ ⊦ P A ⟶ ⊦ P B ❘ # eq_congP 2 5 6❙
/T Common theorems about equality ❙
eq_symm: {t: 𝒰 100, A: t, B: t} ⊦ A ≐ B ⟶ ⊦ B ≐ A
❘ = [t, A, B, AEqB] eq_congP ([z] z ≐ A) AEqB (eq_refl A)
❘ # eq_symm 4 ❙
/T A symmetric variant of eq_congProp ❙
eq_congPropReversed: {t: 𝒰 100, P: t ⟶ prop, A: t, B: t} ⊦ A ≐ B ⟶ ⊦ P B ⟶ ⊦ P A
❘ = [t, P, A, B, AEqB, PB] eq_congP P (eq_symm AEqB) PB
❘ # eq_congPR 2 5 6 ❙
eq_trans: {t : 𝒰 100, A : t, B: t, C: t} ⊦ A ≐ B ⟶ ⊦ B ≐ C ⟶ ⊦ A ≐ C
❘ = [t, A, B, C, AEqB, BEqC] eq_congPR ([z] z ≐ C) AEqB BEqC
❘ # eq_trans 5 6 ❙
/T A form of congruence wrt. the equality sign that is weaker than (and hence definable by) eq_congProp ❙
eq_cong : {t: 𝒰 100, s: 𝒰 100, f: t ⟶ s, A: t, B: t} ⊦ A ≐ B ⟶ ⊦ (f A) ≐ (f B)
❘ = [t, s, f, A, B, AEqB] eq_congP ([z] (f A) ≐ (f z)) AEqB (eq_refl (f A))
❘ # eq_cong 3 6 ❙
❚
/T Now some theories that introduce primitive types and literals for them.
Because literals must modify the parser, they are supplied as rules that are implemented in a plugin.❚
...
...
@@ -192,7 +215,7 @@ theory Literals : ur:?LF =
// test : ⊦ leq_lit 0 1 ❘ = tru_introduction ❙
// test2 : ⊦ nat_lit_succ 1 ≐ 2 ❘ = eq_refl 2 ❙
❚
theory Trigonometry : ur:?LF =
...
...
@@ -214,14 +237,14 @@ theory Trigonometry : ur:?LF =
pi_num = 3.1415926535897932384626 ❙
❚
/T String literals are also needed occasionally, e.g., in the LMFDB.❚
theory Strings : ur:?LF =
include ?Logic❙
string: type ❙
rule rules?StringLiterals ❙
concat: string ⟶ string ⟶ string❙
rule rules?StringLiterals ❙
concat: string ⟶ string ⟶ string❙
❚
/T Now some more complex types. First lists.❚
...
...
@@ -232,7 +255,7 @@ theory Lists : ur:?LF =
theory InformalProofs : ur:?LF =
include ?Strings ❙
proofsketch : {A : prop} string ⟶ ⊦ A ❘ # sketch 2 ❙
byproof : {A,B} ⊦ A ⟶ ⊦ B ❘ # by 3 ❙
addproofstep : {A,B,C: prop} ⊦ A ⟶ ⊦ B ⟶ ⊦ B ❘ # 4 and 5 ❙
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment