Skip to content
Snippets Groups Projects
Commit 23218536 authored by Max Rapp's avatar Max Rapp
Browse files

Fix broken or elimination

parent 9fd75968
No related branches found
No related tags found
No related merge requests found
......@@ -97,13 +97,12 @@ theory NaturalDeduction : ur:?LF =
equiv_introduction : {A,B} ⊦ (A ⇒ B) ⟶ ⊦ (B ⇒ A) ⟶ ⊦ (A ⇔ B) ❘ # equivi 3 4❙
biimplication_elimination_left : {A, B}⊦ (A ⇔ B) ⟶ ⊦ (A ⇒ B) ❘ # biell 3❙
biimplication_elimination_right : {A,B}⊦ (A ⇔ B) ⟶ ⊦ (B ⇒ A) ❘ # bielr 3❙
or_elimination : {A,B,C} ⊦ (A ∨ B) ⟶ (⊦ A ⟶ ⊦ C) ⟶ (⊦ B ⟶ ⊦ C) ⟶ ⊦ C ❘ # orelim 3 4 5❙
modus_ponens : {A,B} (⊦ A ⇒ B) ⟶ ⊦ A ⟶ ⊦ B ❘ # MP 3 4 ❙
or_elimination : {A,B,C} ⊦ (A ∨ B) ⟶ (⊦ A ⟶ ⊦ C) ⟶ (⊦ B ⟶ ⊦ C) ⟶ ⊦ C ❘ # orelim 4 5 6
modus_ponens : {A,B} (⊦ A ⇒ B) ⟶ ⊦ A ⟶ ⊦ B ❘# MP 3 4 ❙
/T basic axioms governing Equality. Again, all the type parameters can be left implicit ❙
eq_refl : {t:𝒰 100,A: t} ⊦ A ≐ A ❘ # eq_refl 2❙
eq_cong : {t : 𝒰 100, s : 𝒰 100, f : t ⟶ s, A : t, B: t}
⊦ A ≐ B ⟶ ⊦ (f A) ≐ (f B) ❘ # eq_cong 3 6❙
// biimplication_elimination_left : {A,B}⊦ (A ⇔ B) ⟶ ⊦ (A ⇒ B) ❘ # biell 3 ❙
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment