Skip to content
Snippets Groups Projects
Commit 6a1527a8 authored by Tom Wiesing's avatar Tom Wiesing :speech_balloon:
Browse files

Automatically replace old LF symbols and delimiters

parent 358e6d87
No related branches found
No related tags found
No related merge requests found
namespace http://mathhub.info/MitM/smglom/draft-0 
namespace http://mathhub.info/MitM/smglom/draft-0
import base http://mathhub.info/MitM/Foundation 
import base http://mathhub.info/MitM/Foundation
// This is an outline of how to design the MitM for group theory
//
......@@ -21,29 +21,29 @@ import base http://mathhub.info/MitM/Foundation 
// Subgroup
// subset of group that is closed
// AllSubgroups : {G : Group} Set (of subgroups of G)
// AllSubgroups : {G : Group} Set (of subgroups of G)
// Subgroups via embeddings:
// subgroup : {G : Group} (injection H G)
// subgroup : {G : Group} (injection H G)
// Cosets {G : Group} U : Subgroup G Set
// Cosets {G : Group} U : Subgroup G Set
// Group Action (what about pairs?)
// really these are permutation actions...
// need both left- and right-actions
// left-action : {X : Set} {G : Group} X × G X
// right-action : {X : Set} {G : Group} G × X X
// left-action : {X : Set} {G : Group} X × G X
// right-action : {X : Set} {G : Group} G × X X
//
// also: action : {X : Set} {G : Group} G SymmetricGroup(X)
// also: action : {X : Set} {G : Group} G SymmetricGroup(X)
// Formalise the "isomorphism" between the two?
// What about Automorphism groups of stuff? If we have a graph Γ and a group G
// then we act on Γ by graph automorphisms
// for any group action `act` we define
// stabiliser : {act : GroupAction} groundset act Subgroup of G
// orbit : {act : GroupAction} groundset act Subset (groundset act)
// stabiliser : {act : GroupAction} groundset act Subgroup of G
// orbit : {act : GroupAction} groundset act Subset (groundset act)
//
// Centraliser
......
namespace http://www.gap-system.org/ 
import rules scala://GAP.odk.mmt.kwarc.info
namespace http://www.gap-system.org/
import rules scala://GAP.odk.mmt.kwarc.info
theory Types : ur:?PLF =
object : type 
category : type 
object : type
category : type
filter = object type 
filter = object type
constant # : object filter type  // = [o][f] f o  # 1 # 2 
constant # : object filter type // = [o][f] f o # 1 # 2
filter_and : filter filter filter  # 1 and 2 
filter_and_hasFilter1 : {x,f : filter,g : filter} x # f x # g x # (f and g) 
filter_and_hasFilter2 : {x,f : filter,g : filter} x # (f and g) x # f 
filter_and_hasFilter3 : {x,f : filter,g : filter} x # (f and g) x # g 
filter_and : filter filter filter # 1 and 2
filter_and_hasFilter1 : {x,f : filter,g : filter} x # f x # g x # (f and g)
filter_and_hasFilter2 : {x,f : filter,g : filter} x # (f and g) x # f
filter_and_hasFilter3 : {x,f : filter,g : filter} x # (f and g) x # g
ded : object type 
ded : object type
rule rules?Booleans 
rule rules?Integers 
rule rules?Floats 
rule rules?Booleans
rule rules?Integers
rule rules?Floats
booleans : type 
integers : type 
floats : type 
gapbool : booleans object 
gapint : integers object 
gapfloat : floats object 
booleans : type
integers : type
floats : type
gapbool : booleans object
gapint : integers object
gapfloat : floats object
trueI : ded (gapbool true) 
catFilter : category filter 
propertyFilter : (object object) filter  = [p] [o] ded (p o) 
trueI : ded (gapbool true)
catFilter : category filter
propertyFilter : (object object) filter = [p] [o] ded (p o)
Has : (object object) filter 
CategoryCollection : filter category 
Set : filter (object object) 
IsBool : category 
IsObject : category 
// HasIsProperty : {o,x} x # (propertyFilter o) ((Has o) x) # catFilter IsBool 
Has : (object object) filter
CategoryCollection : filter category
Set : filter (object object)
IsBool : category
IsObject : category
// HasIsProperty : {o,x} x # (propertyFilter o) ((Has o) x) # catFilter IsBool

// theory Types : odk:?Math =
Object : tp 
Object : tp
Family : tp 
Family_Of_Families : tm Family 
Families_are_Objects : Family < Object 
Family_Of_Object : tm Object tm Family  # FamilyOfObj 1 
Family_Of_Family_is_Family_of_Families : {F:tm Family} ⊦ eq Family (FamilyOfObj (tpCast Families_are_Objects F)) Family_Of_Families 
Family : tp
Family_Of_Families : tm Family
Families_are_Objects : Family < Object
Family_Of_Object : tm Object tm Family # FamilyOfObj 1
Family_Of_Family_is_Family_of_Families : {F:tm Family} ⊦ eq Family (FamilyOfObj (tpCast Families_are_Objects F)) Family_Of_Families
Filter : tp 
Elementary_Filter : tp 
Elementary_Filter_Is_Filter : Elementary_Filter < Filter 
Filter : tp
Elementary_Filter : tp
Elementary_Filter_Is_Filter : Elementary_Filter < Filter
Filter_applies : tm Filter tm Object prop  # 1 _ 2 
Filter_applies : tm Filter tm Object prop # 1 _ 2
filter_conj : tm Filter tm Filter tm Filter  # 1 + 2 prec 5
filter_conj_is_Conjunction : {F1,F2,O} ⊦ ((F1 + F2) _ O) ≐ ((F1 _ O) ∧ (F2 _ O))  role Simplify 
filter_conj_is_associative : {F1,F2,F3} ⊦ F1 + (F2 + F3) ≐ (F1 + F2) + F3 
filter_conj_is_commutative : {F1,F2} ⊦ F1 + F2 ≐ F2 + F1 
filter_conj : tm Filter tm Filter tm Filter # 1 + 2 prec 5
filter_conj_is_Conjunction : {F1,F2,O} ⊦ ((F1 + F2) _ O) ≐ ((F1 _ O) ∧ (F2 _ O)) role Simplify
filter_conj_is_associative : {F1,F2,F3} ⊦ F1 + (F2 + F3) ≐ (F1 + F2) + F3
filter_conj_is_commutative : {F1,F2} ⊦ F1 + F2 ≐ F2 + F1
filter_def : (tm Object prop) tm Filter  # MakeFilter 1 
filter_def_application : {F,O} ⊦ ((MakeFilter F) _ O) ≐ F O 
filter_def : (tm Object prop) tm Filter # MakeFilter 1
filter_def_application : {F,O} ⊦ ((MakeFilter F) _ O) ≐ F O
GAPtype : tp 
Family_of_GAPtype : tm GAPtype tm Family  # FamilyOfTp 1 
Filter_of_GAPtype : tm GAPtype tm list Elementary_Filter  # FilterOf 1 
GAPtype_Constructor : tm Family tm list Elementary_Filter tm GAPtype  # GAPtp 1 2 
// Filter_applies_to_type_object : {O} ⊦ (FilterOf O) _ O 
GAPtype : tp
Family_of_GAPtype : tm GAPtype tm Family # FamilyOfTp 1
Filter_of_GAPtype : tm GAPtype tm list Elementary_Filter # FilterOf 1
GAPtype_Constructor : tm Family tm list Elementary_Filter tm GAPtype # GAPtp 1 2
// Filter_applies_to_type_object : {O} ⊦ (FilterOf O) _ O
Operation : tp 
Name_of_Operation : tm Operation tm string 
Arglength_of_Operation : tm Operation tm ℕ 
Filter_of_Operation : {op: tm Operation} tm vector Filter (Arglength_of_Operation op) 
Operation_Constructor : {name: tm string, args: tm ℕ} tm vector Filter args tm Operation 
Operation : tp
Name_of_Operation : tm Operation tm string
Arglength_of_Operation : tm Operation tm ℕ
Filter_of_Operation : {op: tm Operation} tm vector Filter (Arglength_of_Operation op)
Operation_Constructor : {name: tm string, args: tm ℕ} tm vector Filter args tm Operation
Category : tp 
Category_is_elementary_Filter : Category < Elementary_Filter 
Category : tp
Category_is_elementary_Filter : Category < Elementary_Filter
Property : tp 
Property_is_elementary_Filter : Property < Elementary_Filter 
Has : tm Property → tm Elementary_Filter 
OperationFromProperty : tm Property → tm Operation 
OperationSet : tm Property → tm Operation  # Set 1 

\ No newline at end of file
Property : tp ❙
Property_is_elementary_Filter : Property < Elementary_Filter ❙
Has : tm Property ⟶ tm Elementary_Filter ❙
OperationFromProperty : tm Property ⟶ tm Operation ❙
OperationSet : tm Property ⟶ tm Operation ❘ # Set 1 ❙
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment