Skip to content
Snippets Groups Projects
Commit b55dace8 authored by Michael Kohlhase's avatar Michael Kohlhase
Browse files

debugging

parent 40a97678
No related branches found
No related tags found
No related merge requests found
...@@ -2,8 +2,10 @@ ...@@ -2,8 +2,10 @@
\begin{definition} \begin{definition}
The \defii{total}{charge} denoted by $\TotalCharge$ describes the net charge entering The \defii{total}{charge} denoted by $\TotalCharge$ describes the net charge entering
the right hand side of the Poisson equation. It is composed by the the right hand side of the Poisson equation. It is composed by the
\trefii[DopingProfile]{doping}{profile} and the \adefii[Densities]{electron}{electron}{density} \trefii[DopingProfile]{doping}{profile} and the
and \atrefii[Densities]{hole densities}{hole}{density} by $\TotalCharge \atrefii[DensityElectrons]{electron}{electron}{density} and
\atrefii[DensityHoles]{hole densities}{hole}{density} by
$\TotalCharge
=\realtimes{-\ElementaryCharge,\realminus{\realplus{\DopingProfile,\DensityHoles},\DensityElectrons}}$. =\realtimes{-\ElementaryCharge,\realminus{\realplus{\DopingProfile,\DensityHoles},\DensityElectrons}}$.
\end{definition} \end{definition}
\end{mhmodnl} \end{mhmodnl}
......
\begin{mhmodnl}{DeviceGeometry}{en} \begin{mhmodnl}{DeviceGeometry}{en}
\begin{definition} \begin{definition}
An important \trefii[Device]{device}{property} is the spatial geometry. It is modelled An important \trefii[Device]{device}{property} is the spatial geometry. It is modelled
by a \defi{domain} $\sseteq\DeviceDomain{\ndim{3}\RealNumbers}$ that has special regularity by a \defi{domain} $\sseteq\DeviceDomain{\ndim\RealNumbers{3}}$ that has special
properties.\ednote{I think we want to also introduce a theory \texttt{OneDDevice} as a regularity properties.\ednote{I think we want to also introduce a theory
3D device with lots of symmetry. And we should have a view that relates \texttt{OneDDevice} as a 3D device with lots of symmetry. And we should have a view
$\DeviceDomain$ to an interval in this case. The theory \texttt{OneDDevice} should that relates $\DeviceDomain$ to an interval in this case. The theory
also introduce ``top'' and ``bottom'' and also 0 and $L$ via the view.} \texttt{OneDDevice} should also introduce ``top'' and ``bottom'' and also 0 and $L$
via the view.}
\end{definition} \end{definition}
\end{mhmodnl} \end{mhmodnl}
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
\begin{definition} \begin{definition}
Expression for electric displacement denoted by Expression for electric displacement denoted by
$\ElectricDisplacement = $\ElectricDisplacement =
\uminus\DielectricPermitivity d/dx \ElectrostaticPotential$ \realuminus\DielectricPermitivity d/dx \ElectrostaticPotential$
\end{definition} \end{definition}
\end{mhmodnl} \end{mhmodnl}
......
\begin{mhmodnl}{FermiPotentialElectrons}{en} \begin{mhmodnl}{FermiPotentialElectrons}{en}
\begin{definition} \begin{definition}
The \defiii{Fermi}{Potential}{Electrons} usually denoted by $\QFPn$ is a function The \defiii{Fermi}{Potential}{Electrons} usually denoted by $\QFPnOp$ is a function
describing the variation of the quasi-Fermi potentials of the electrons across the describing the variation of the quasi-Fermi potentials of the electrons across the
domain $\DeviceDomain$. It is linked to the quasi-Fermi level of the electrons which domain $\DeviceDomain$. It is linked to the quasi-Fermi level of the electrons which
controls the occupation of the conduction band and is a measure for the electron density controls the occupation of the conduction band and is a measure for the electron density
......
\begin{mhmodnl}{FermiPotentialHoles}{en} \begin{mhmodnl}{FermiPotentialHoles}{en}
\begin{definition} \begin{definition}
The \defiii{Fermi}{Potential}{Holes} usually denoted by $\QFPp$ is a function describing The \defiii{Fermi}{Potential}{Holes} usually denoted by $\QFPpOp$ is a function describing
the variation of the quasi-Fermi potentials of the holes across the domain the variation of the quasi-Fermi potentials of the holes across the domain
$\DeviceDomain$. It is linked to the quasi-Fermi level of the holes which controls the $\DeviceDomain$. It is linked to the quasi-Fermi level of the holes which controls the
occupation of the valance band. Its gradient is the driving force of the hole current. occupation of the valance band. Its gradient is the driving force of the hole current.
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
in the amount of substance given by one mole. in the amount of substance given by one mole.
The accepted value of $\AvogadroConst$ is The accepted value of $\AvogadroConst$ is
$\quantityof{\scinotation{6.022140857}{23}}{\frac1\mole}$ $\quantityof{\scinotation{6.022140857}{23}}{\frac1\SImole}$
\end{definition} \end{definition}
\begin{definition} \begin{definition}
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
particles at the stated temperature is being considered. particles at the stated temperature is being considered.
The accepted value of $\GasConst$ is The accepted value of $\GasConst$ is
$\quantityof{8.3144598}{\frac\Joule{\atimes{\mole\Kelvin}}}$ $\quantityof{8.3144598}{\frac\Joule{\atimes{\SImole\Kelvin}}}$
\end{definition} \end{definition}
\begin{definition} \begin{definition}
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
\gimport[smglom/arithmetics]{scinotation} \gimport[smglom/arithmetics]{scinotation}
\importmhmodule[repos=BaseMH/physics,path=units/en/energy]{energy} \importmhmodule[repos=BaseMH/physics,path=units/en/energy]{energy}
\importmhmodule[repos=BaseMH/physics,path=units/en/temperature]{temperature} \importmhmodule[repos=BaseMH/physics,path=units/en/temperature]{temperature}
\importmhmodule[repos=BaseMH/physics,path=units/en/substance-amount]{substance-amount}
\symdef[name=vacuum-dielectric-permitivity]{VacuumDielectricPermitivity}{\varepsilon_0} \symdef[name=vacuum-dielectric-permitivity]{VacuumDielectricPermitivity}{\varepsilon_0}
\symtest{VacuumDielectricPermitivity}{\VacuumDielectricPermitivity} \symtest{VacuumDielectricPermitivity}{\VacuumDielectricPermitivity}
...@@ -10,12 +11,14 @@ ...@@ -10,12 +11,14 @@
\symtest{ElementaryCharge}{\ElementaryCharge} \symtest{ElementaryCharge}{\ElementaryCharge}
\symdef[name=gas-constant]{GasConst}{\text{R}} \symdef[name=gas-constant]{GasConst}{\text{R}}
\symvariant{GasConst}{bar}{\text{\overline{R}}} \symtest[name=gas-constantt]{GasConst}{\GasConst}
\symvariant{GasConst}{bar}{\overline{\text{R}}}
\symtest[variant=bar]{GasConst}{\GasConst[bar]}
\symdef[name=Avogadro-constant]{AvogadroConst}{N_A} \symdef[name=Avogadro-constant]{AvogadroConst}{N_A}
\symvariant{AvogadroConst}{l}{L} \symvariant{AvogadroConst}{l}{L}
\symdef[name=Boltzmann-constant]{BoltzmannConst}{k_B} \symdef[name=Boltzmann-constant,align=Boltzmann_constant]{BoltzmannConst}{k_B}
\symtest{BoltzmannConst}{\BoltzmannConst} \symtest{BoltzmannConst}{\BoltzmannConst}
\symvariant{BoltzmannConst}{noB}{k} \symvariant{BoltzmannConst}{noB}{k}
\symtest[variant=noB]{BoltzmannConst}{\BoltzmannConst[noB]} \symtest[variant=noB]{BoltzmannConst}{\BoltzmannConst[noB]}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment