Skip to content
Snippets Groups Projects
Commit c8e318b3 authored by Michael Kohlhase's avatar Michael Kohlhase
Browse files

removing_deprecated_mtrefis

parent 27ba1bd9
No related branches found
No related tags found
No related merge requests found
...@@ -3,8 +3,8 @@ ...@@ -3,8 +3,8 @@
The \defii{total}{charge} denoted by $\TotalCharge$ describes the net charge entering The \defii{total}{charge} denoted by $\TotalCharge$ describes the net charge entering
the right hand side of the Poisson equation. It is composed by the the right hand side of the Poisson equation. It is composed by the
\trefii[DopingProfile]{doping}{profile} and the \trefii[DopingProfile]{doping}{profile} and the
\mtrefi[DensityElectrons?electron-density]{electron} and \trefi[DensityElectrons?electron-density]{electron} and
\mtrefii[DensityHoles?hole-density]{hole}{densities} by \trefii[DensityHoles?hole-density]{hole}{densities} by
$\TotalCharge $\TotalCharge
=\realtimes{-\ElementaryCharge,\realminus{\realplus{\DopingProfile,\DensityHoles},\DensityElectrons}}$. =\realtimes{-\ElementaryCharge,\realminus{\realplus{\DopingProfile,\DensityHoles},\DensityElectrons}}$.
\end{definition} \end{definition}
......
\begin{mhmodnl}{OneDimDevice}{en} \begin{mhmodnl}{OneDimDevice}{en}
\begin{definition} \begin{definition}
A \trefi[Device]{device} is called \defi{one-dimensional}, iff all of its A \trefi[Device]{device} is called \defi{one-dimensional}, iff all of its
\mtrefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are \trefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are
translation-invariant in two directions translation-invariant in two directions
\end{definition} \end{definition}
\end{mhmodnl} \end{mhmodnl}
......
\begin{mhmodnl}{TwoDimDevice}{en} \begin{mhmodnl}{TwoDimDevice}{en}
\begin{definition} \begin{definition}
A \trefi[Device]{device} is called \defi{two-dimensional}, iff all of its A \trefi[Device]{device} is called \defi{two-dimensional}, iff all of its
\mtrefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are \trefi[Device?device-property]{properties} \trefi[DeviceGeometry]{domain} are
translation-invariant in one direction. translation-invariant in one direction.
\end{definition} \end{definition}
\end{mhmodnl} \end{mhmodnl}
......
...@@ -152,7 +152,7 @@ constants. The (absolute) \trefii[PoissonParameters]{dielectric}{permittivity} ...@@ -152,7 +152,7 @@ constants. The (absolute) \trefii[PoissonParameters]{dielectric}{permittivity}
$\DielectricPermitivity = $\DielectricPermitivity =
\realtimes{\VacuumDielectricPermitivity,\RelativeDielectricPermitivity}$ is given as the \realtimes{\VacuumDielectricPermitivity,\RelativeDielectricPermitivity}$ is given as the
product of the \trefiii[PoissonParameters]{vacuum}{dielectric}{permittivity} product of the \trefiii[PoissonParameters]{vacuum}{dielectric}{permittivity}
$\VacuumDielectricPermitivity$ and the \mtrefi[PoissonParameters?relative-dielectric-permittivity]{relative permittivity} of the semiconductor $\VacuumDielectricPermitivity$ and the \trefi[PoissonParameters?relative-dielectric-permittivity]{relative permittivity} of the semiconductor
$\RelativeDielectricPermitivity$ in static (low frequency) limit. The carrier mobilities $\RelativeDielectricPermitivity$ in static (low frequency) limit. The carrier mobilities
$\ElectronMobility$ and $\HoleMobility$, the conduction and valence band densities of $\ElectronMobility$ and $\HoleMobility$, the conduction and valence band densities of
states $\DOSConductionBand$ and $\DOSValenceBand$ as well as the conduction and valence band-edge energies $E_c$ and states $\DOSConductionBand$ and $\DOSValenceBand$ as well as the conduction and valence band-edge energies $E_c$ and
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment